
# PHYS1250 WEEK 1



Discuss the effects of ionising radiation on macromolecules and cells

ionisation (becoming charged) chemical bonds change macromolecule properties change 1 the shape function Radiation + macromotecules => ionisation

# 3 Main damage Mechanisms:

Main chain scission:

- Long chain splits into smaller molecules

Crosslinking:

- New bonding structures attach the macromolecule to other molecules or to another segment of itself
- 1. Radiation ionises electron in chain
- 2. Chain has some broken bonds
- 3. Electron remaining in broken bonds are unhappy
- 4. They form new bonds to lower their energy

Point lesion:

- Disruption of single chemical bond, cannot be detected analytically, but can modify macromolecule (changes bond but does not break it)

# - PATIENT PROTECTION

Maximise Benefit > minimise risk

Factors affecting patient dose:

- 1. Unnecessary exams (DR, NM, RT)
- Do not change patient management (routine chest image for acute coronary syndrome)
- 2. Repeat exams (DR, NM)
- Should be minimised (4%-15%)
- Reduce by clear communication instructions, and appropriate technique selection
- 3. Filtration and shielding (DR)
- Expose only useful radiation
- Critical organs may be shielded
- Contact shield (on pt like apron)
- Shadow shield (in beam)
- 4. Appropriate projection (DR, RT)
- Especially for torso/chest (flip to PA gives lower dose to breast tissue)

#### MEASURES OF DIAGNOSTIC OUTCOMES

#### **Visual perception**

The human visual system -> essential and complex. Can be helped by image processing (machine aid)

Diagnosis by radiologist or NM physician – understanding detection and interpretation of visual data is important for MRS.

#### **Proposed process**

- 1. Look at image and compare with "remembered" images of normal structures
- 2. Mental image subtraction to focus on differences from normal
- 3. Close examination, decisions whether normal or unusual

#### 3 sequential processes of visual perception

- 1. Detection necessary first step
- 2. Recognition clues can be dismissed

*In solids, charge is usually carried by electrons* Conductor: mobile electrons available

**Semiconductor:** electron can move, but require a bit of extra energy

Insulator: no electrons can move easily

**Voltage** is an energy difference (for a charge) between 2 points

Measured in volt (V) like "gravity" for charge > acceleration

Current is amount of charge flowing

- Measured in amp (A)

E.g. kids with m & m's in obstacle course

Kids > electrons M&M's > volts #kids per time > current

# Band theory **REVISE HERE**

Electrons cannot occupy the same state\*. In separate atoms it's OK, but chemical bonds mean sharing electrons.

- Means must have states split apart in some way in order for electrons to be different.

\*= identical quantities

\*diagram\*

If electrons can reach conduction band material will have conductivity. We can describe electrical properties from the "band gap".

| Conduction Band | ner lap Conduction Band | 1            |
|-----------------|-------------------------|--------------|
| Valence Band    | Valence Band            | burd gap     |
| CONDUCTOR       | SEMICONDUCTOR           | Valence Band |
| (eg rebels)     | (a silicon)             | INSULATOR    |

# **IMAGING IN NUCLEAR MEDICINE**

Uses radioactive substances to diagnose and treat conditions. Radioactive decay produces gamma rays which are detected.

produced by produced by nucleurs

Parallels between DR and NM:

- The patient
- Non-visible ionising radiation
- See internal features of body

How is NM different?

- Position of source (inside patient)
- Source (x-rays vs gamma rays)
- Info desired (function vs anatomy)

Gamma-ray energy is set by isotope (NO kVp adjustment)

# **Imaging with Gamma Rays**

Scintillator (radiation > visible light) Gamma rays can't be switched off

- ⇒ Lower dose rate
- ⇒ Only few tiny flashes
- ⇒ Need to amplify light to measure it

Photomultiplier Tube (PMT) uses photoelectric effect to turn light into electrical signal.

# **PHYS1250 COMPRESSED NOTES**

Radiation + macromolecules => Ionisation Chemical bonds change Macromolecule properties change

**3 MAIN DAMAGE MECHANISMS** All 3 can be reversed in healing.

Main chain scission Long chain splits into smaller molecules

# Crosslinking

New bonding structures attach the macromolecule to other molecules or to another segment of itself

- 1. Radiation ionises electron in chain
- 2. Chain has some broken bonds
- 3. Electron remaining in broken bonds are unhappy
- 4. They form new bonds to lower their energy

#### Point lesion

Disruption of single chemical bond. Cannot be detected analytically but can modify macromolecule.

#### Somatic mutations

Occur in single cell of body, cannot be inherited

# Genetic/Germline mutations

Occur in gametes - can be passed on to offspring

# Direct damage

Radiation itself causes ionisation of molecules (hits DNA)

# Indirect damage

Atoms ionised by secondary electron produced by Compton scattering (Bounces off H<sub>2</sub>O creating free radicals) Ionises a molecule that is not crucial for biochemistry, but the reactive chemical by-products do damage to an important biological macromolecule.

# Target theory

For a cell to die, target molecule must be hit

Converts light to charge

- Charge is proportional to amount of light
- Array or grid "under" scintillator

Amorphous <u>silicon</u> is photodetector (indirect) Amorphous <u>selenium</u> is photo conductor (direct)

#### Capacitor

Purpose is to collect, and store electrical charge produced in the a-Si photodiode array.

# Factors affecting DR image quality

#### Contrast

Differences in shades of grey (brightness), allows anatomical parts to be distinguished.

#### Dynamic range

- ⇒ Range of signal "brightness" that can give good image
- $\Rightarrow$  4 orders of magnitude

#### Detail

- ⇒ Spatial resolution
- ⇒ Depends on whole imaging instrument

#### Spatial resolution

Measured in line pairs per mm. (lp/mm)

 $\Rightarrow$  Better resolution =  $^{p/mm}$ 

# Magnification

Always occurs and radiographers try to minimise its effect

- Object-detector distance needs to be as small as possible
- Sometimes needed to enhance smaller structures

#### Penumbra

Blurred edge on image or "partial shade". ^ source focal spot = ^ penumbra

```
^ Focus-Detector Distance (FDD) = ^ resolution^ FDD = less magnification
```