PHYSICS A2

CHAPTER 12: MOTION IN A CIRCLE

12.1 Kinematics of uniform circular motion

- define the radian and express angular displacement in radians
- understand and use the concept of angular speed

TERMS	DEFINITION/ FORMULA
Angular displacement	Change in angle of a bodyas it rotates around a circle
Radian	 Angle subtended at the centre of a circle by an arc of length equal to the radius of the circle
Angular velocity	Rate of change of angular displacementswept out by radius
Angular speed	1. string: - Rate of change of angle - by the string 2. ball: - Change in angular displacement - per unit time

Relationship between v, r and ω

- ω: angular velocity / angular frequency

- Kinetic theory equation :

$$\overline{u2} = \frac{1}{3} \overline{c2}$$

$$Pressure = \frac{Force}{Area}$$

$$Force = \frac{Nmc^2}{3 l^2}$$

$$P = \frac{Nmc^2}{3 l}$$

$$P = \frac{Nmc^2}{3 l}$$

$$PV = \frac{Nmc^2}{3 l}$$

- Kinetic energy
 - KE is directly proportional to T

$$KE = \frac{1}{2}Nm\overline{c}^{2}$$

$$PV = \frac{Nmc^{2}}{3}PV = nRT$$

$$Nm\overline{c}^{2} = 3nRT$$

$$KE = \frac{3}{2}nRT$$

Potential difference

$$V_{AB} = \frac{Q}{4\pi\varepsilon_0(r_2 - r_1)}$$

$$V_{AB} = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$$

V_{AB} is equal to the gain in electrical potential energy if Q is positive and loss if Q is negative

Equipotential line

- Equipotential surface: a surface where the electric potential is constant
- Equipotential lines are drawn such that potential is constant between intervals
- Potential gradient = 0, E = 0 → no work is done when a charge moved along the surface/ line
- Electric field lines must meet equipotential surface at
- right angles

Electric potential energy

$$E = Fs$$

$$F = \frac{Qq}{4\pi\epsilon_0 r^2}$$

$$E = \frac{Qqr}{4\pi\epsilon_0 r^2}$$

$$E = \frac{Qq}{4\pi\epsilon_0 r^2}$$

Full-wave rectification

Use 4 diodes (bridge rectifier)

Smoothing

- Use a capacitor to reduce amount of ripple
- The capacitor charges and maintains the voltage as a.c. voltage rises, (first half of the wave)
- As the wave slopes downward, the capacitor begins to discharge in order to maintain the voltage
- Half wave:

- Full wave :

constant

 There is negligible absorption of this radiated power between the star and the Earth → energy radiated = energy received

Radiant flux intensity/ density (F)

- Radiant flux intensity = Luminosity/ surface area
- Unit: Wm⁻²

Standard candles

- Source of light that has a known luminosity, without having to know its distance
- Example : Cepheid variable stars, Type la supernovae
- If we know the luminosity, we can estimates its distance from how bright it appears from Earth

25.2 Stellar radii

- recall and use Wien's displacement law λmax

 1 / T to estimate the peak surface temperature of a star
- use the Stefan–Boltzmann law L = $4\pi\sigma r^2$
- use Wien's displacement law and the Stefan–Boltzmann law to estimate the radius of a star

TERMS	DEFINITION/ FORMULA
Black body	 An idealised object that absorbs all incident electromagnetic radiation
Wien's displacement law	 The black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature
Stefan-Boltzmann law	The total energy radiated per unit time per unit surface area of a black body is proportional to the fourth power of its absolute temperature