PHYSICS AZ

CHAPTER 12 : MOTION IN A CIRCLE

12.1 Kinematics of uniform circular motion

- define the radian and express angular displacement in radians
- understand and use the concept of angular speed

TERMS	DEFINITION/ FORMULA
Angular displacement	- Change in angle of a body - as it rotates around a circle
Radian	- Angle subtended at the centre of a circle - by an arc of length equal to the radius of the circle
Angular velocity	- Rate of change of angular displacement - swept out by radius
Angular speed	1. string: - Rate of change of angle - by the string 2. ball: - Change in angular displacement - per unit time

- Relationship between v, r and ω

- $\quad \omega$: angular velocity / angular frequency
- Kinetic theory equation :

- Kinetic energy
- KE is directly proportional to T

- Potential difference

- $\quad V_{A B}$ is equal to the gain in electrical potential energy if Q is positive and loss if Q is negative
- Equipotential line
- Equipotential surface: a surface where the electric potential is constant
- Equipotential lines are drawn such that potential is constant between intervals
- Potential gradient $=0, \mathrm{E}=0 \rightarrow$ no work is done when a charge moved along the surface/ line
- Electric field lines must meet equipotential surface at
- right angles

- Electric potential energy

I	$E=F s$
I	$F=\underline{Q q}$
1	$F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}}$
I	$E=\underline{Q q r}$
I	$E=\frac{Q q r}{4 \pi \varepsilon_{0} r^{2}}$
I	$E=\frac{Q q}{}$
I	$E=\frac{4 \pi \varepsilon_{0} r}{}$
I	- - - -

Full-wave rectification

- Use 4 diodes (bridge rectifier)

Smoothing

- Use a capacitor to reduce amount of ripple
- The capacitor charges and maintains the voltage as a.c. voltage rises, (first half of the wave)
- As the wave slopes downward, the capacitor begins to discharge in order to maintain the voltage
- Half wave :

- Full wave :

constant
- There is negligible absorption of this radiated power between the star and the Earth \rightarrow energy radiated $=$ energy received

Radiant flux intensity/ density (F)

- Radiant flux intensity = Luminosity/ surface area
- Unit: Wm ${ }^{-2}$

I	$F=\frac{L}{A}$
I	A
1	
1	$F=\frac{L}{L^{2}}$
I	$4 \pi d^{2}$

Standard candles

- Source of light that has a known luminosity, without having to know its distance
- Example : Cepheid variable stars, Type la supernovae
- If we know the luminosity, we can estimates its distance from how bright it appears from Earth

25.2 Stellar radii

- recall and use Wien's displacement law $\lambda \max \propto 1$ / T to estimate the peak surface temperature of a star
- use the Stefan-Boltzmann law $L=4 \pi \sigma r^{\wedge} 2^{\wedge} 4$
- use Wien's displacement law and the Stefan-Boltzmann law to estimate the radius of a star

TERMS	DEFINITION/ FORMULA
Black body	-An idealised object that absorbs all incident electromagnetic radiation
Wien's displacement law	The black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature
Stefan-Boltzmann law	The total energy radiated per unit time per unit surface area of a black body is proportional to the fourth power of its absolute temperature

