Summary of Chapter 5

- The only generally soluble second-order equations are linear differential equations with constant coefficients,

$$
\frac{d^{2} y}{d x^{2}}+a \frac{d y}{d x}+b y=f(x)
$$

If $f(x)=0$, the equation is homogeneous. If $f(x) \neq 0$ it is inhomogeneous.

- The solutions of homogeneous equations all take the form $e^{m x}$ where m may be real, imaginary or complex. The values of m are the roots of the auxiliary equation

$$
m^{2}+a m+b=0 .
$$

- If $a^{2}>4 b$, the roots m_{1} and m_{2} are real and distinct so that we can write

$$
y=C e^{m_{1} x}+D e^{m_{2} x} .
$$

If $a^{2}<4 b$, the roots are complex conjugates $m=-a / 2 \pm i k$ so that we can write

$$
\begin{aligned}
y & =e^{-a x / 2}\left(C e^{i k x}+D e^{-i k x}\right) \\
& =e^{-a x / 2}(E \cos k x+F \sin k x) .
\end{aligned}
$$

If $a^{2}=4 b$, the repeated root is real, $m=-a / 2$. The solution is then

$$
y=G x e^{m x}+H e^{m x}
$$

- When $a=0$ and $b>0$, we have simple harmonic motion. When $a>0$ and $b>0$, we have a damped harmonic oscillator.

Summary of Chapter 6

- The general solution of inhomogeneous linear differential equations can be written as

$$
y(x)=y_{p}(x)+y_{h}(x)
$$

where $y_{h}(x)$ is the solution of the corresponding homogeneous equation and $y_{p}(x)$ is a particular solution of the inhomogeneous equation.

- An example of second-order inhomogeneous linear differential equation is the harmonic oscillator with periodic forcing

$$
\ddot{y}+\omega_{0}^{2} y=f \cos (\omega t)
$$

For $\omega \approx \omega_{0}$ the resulting oscillations show very large amplitude, a phenomenon known as resonance.

- A system of two coupled equations is written as

$$
\frac{d x}{d t}=f(x, y, t), \quad \frac{d y}{d t}=g(x, y, t)
$$

and is generally intractable.

- In simple cases, one of the equations is independent of the other. The solution of this equation can then be introduced into the second. Sometimes a substitution for x and y may produce independent equations.
- In cases of linear equations with constant coefficients,

$$
\frac{d x}{d t}=a x+b y, \quad \frac{d y}{d t}=c x+d y
$$

one variable may be eliminated by first differentiating one equation,

$$
\frac{d^{2} x}{d t^{2}}=a \frac{d x}{d t}+b \frac{d y}{d t}
$$

then substituting for $d y / d t$ using the other equation,

$$
\frac{d^{2} x}{d t^{2}}=a \frac{d x}{d t}+b(c x+d y)
$$

and finally eliminating y by using the first equation again,

$$
\frac{d^{2} x}{d t^{2}}=a \frac{d x}{d t}+b c x+b d\left(\frac{d x / d t-a x}{b}\right)
$$

This produces a second-order differential equation with constant coefficients.

