Contents

1 The Market 4
2 Budget Constraint 8
3 Preferences 10
4 Utility 14
5 Choice 18
6 Demand 24
7 Revealed Preference 27
8 Slutsky Equation 30
9 Buying and Selling 33
10 Intertemporal Choice 37
12 Uncertainty 39
14 Consumer Surplus 43
15 Market Demand 46
18 Technology 48
19 Profit Maximization 52
20 Cost Minimization 54
21 Cost Curves 57
22 Firm Supply 59
23 Industry Supply 62
24 Monopoly 64
25 Monopoly Behavior 67
26 Factor Market 72
27 Oligopoly 76
28 Game Theory 80
30 Exchange 85

Ch. 4. Utility

I. Utility function: An assignment of real number $u(x) \in \mathbb{R}$ to each bundle x
A. We say that u represents \succ if the following holds:

$$
x \succ y \text { if and only if } u(x)>u(y)
$$

- An indifference curve is the set of bundles that give the same level of utility:

B. Ordinal utility

III. Application: labor supply

$-\left\{\begin{array}{l}C: \text { Consumption good } \\ p: \text { Price of consumption good } \\ \ell: \text { Leisure time } ; \bar{L}: \text { endowment of time } \\ w: \text { Wage }=\text { price of leisure } \\ M: \text { Non-labor income } \\ \bar{C} \equiv M / P: \text { Consumption available when being idle }\end{array}\right.$

- $U(C, \ell)$: Utility function, increasing in both C and ℓ
- $L=\bar{L}-\ell$, labor supply
A. Budget constraint and optimal labor supply

$$
p C=M+w L \Leftrightarrow M=p C-w L=p C-w(\bar{L}-\ell) \Leftrightarrow p C+w l=M+w \bar{L}=\underbrace{p \bar{C}+w \bar{L}}_{\text {value of endowment }}
$$

e.g.) Assume $U(C, l)=C^{a} \ell^{1-a}, 0<a<1, M=0$, and $\bar{L}=16$, and derive the labor supply curve
B. Changes in wage: $w<w^{\prime}$

Ch. 20. Cost Minimization

I. Cost minimization: Minimize the cost of producing a given level of output y

$$
\left.\min _{x_{1}, x_{2}} w_{1} x_{1}+w_{2} x_{2} \text { subject to }\left(x_{1}, x_{2}\right) \in Q(y) \text { (i.e. } f\left(x_{1}, x_{2}\right)=y\right)
$$

A. Tangent solution: Consider iso-cost line for each cost level $C, w_{1} x_{1}+w_{2} x_{2}=C$; and find the lowest iso-cost line that meets the isoquant curve

$\rightarrow\left\{\begin{array}{l}x_{1}(w, y), x_{2}(w, y): \text { Conditional factor demand function } \\ c(w, y)=w_{1} x_{1}(w, y)+w_{2} x_{2}(w, y): \text { Cost function }\end{array}\right.$
B. Examples

- Perfect complement: $y=\min \left\{x_{1}, x_{2}\right\}$

$$
\begin{aligned}
& \rightarrow x_{1}(w, y)=x_{2}(w, y)=y \\
& \quad c(w, y)=w_{1} x_{1}(w, y)+w_{2} x_{2}(w, y)=\left(w_{1}+w_{2}\right) y
\end{aligned}
$$

- Perfect substitutes: $y=x_{1}+x_{2}$

$$
\begin{aligned}
\rightarrow x(w, y) & =\left\{\begin{array}{lll}
(y, 0) & \text { if } w_{1}<w_{2} \\
(0, y) & \text { if } w_{2}<w_{1}
\end{array}\right. \\
c(w, y) & =\min \left\{w_{1}, w_{2}\right\} y
\end{aligned}
$$

- Cobb-Douglas: $y=A x_{1}^{a} x_{2}^{b} \rightarrow\left\{\begin{array}{l}T R S=\frac{a x_{2}}{b x_{1}}=\frac{w_{1}}{w_{2}} \\ y=A x_{1}^{a} x_{2}^{b}\end{array}\right.$
$\rightarrow c(w, y)=K w_{1}^{\frac{a}{a+b}} w_{2}^{\frac{b}{a+b}} y^{\frac{1}{a+b}}$, where K is a constant depending on a, b, and A
\rightarrow Monopolist buys less input than competitive firm does

III. Monopsony

- Monopsonistic input market + Competitive output market
A. Input choice

$$
\begin{gathered}
\max _{x} p f(x)-w(x) x \\
\xrightarrow{\text { F.O.C. }} \quad p f^{\prime}(x)=w^{\prime}(x) x+w(x)=w(x)\left[1+\frac{x}{w(x)} \frac{d w(x)}{d x}\right]=w(x)\left[1+\frac{1}{\eta}\right], \\
=M R P
\end{gathered}
$$

where $\eta \equiv \frac{w}{x} \frac{d x}{d w}$ or the supply elasticity of the factor

Example. $w(x)=a+b x$: (inverse) supply of factor x

$$
\rightarrow M C_{x}=\frac{d}{d x}[w(x) x]=\frac{d}{d x}\left[a x+b x^{2}\right]=a+2 b x
$$

B. Minimum wage under monopsony

- If $\left(p_{1}^{*}, p_{2}^{*}\right)$ is equilibrium prices, then $\left(t p_{1}^{*}, t p_{2}^{*}\right)$ for any $t>0$ is equilibrium prices as well so only the relative prices p_{1}^{*} / p_{2}^{*} can be determined.
- A technical tip: Set $p_{2}=1$ and ask what p_{1} must be equal to in equilibrium.

C. Walras' Law

- The value of aggregate excess demand is identically zero, i.e.

$$
p_{1} z_{1}\left(p_{1}, p_{2}\right)+p_{2} z_{2}\left(p_{1}, p_{2}\right) \equiv 0
$$

- The proof simply follows from adding up two consumers' budget constraints

$$
+\begin{aligned}
& p_{1} e_{A}^{1}\left(p_{1}, p_{2}\right)+p_{2} e_{A}^{2}\left(p_{1}, p_{2}\right)=0 \\
& + \\
& p_{1} e_{B}^{1}\left(p_{1}, p_{2}\right)+p_{2} e_{B}^{2}\left(p_{1}, p_{2}\right)=0 \\
& p_{1}[\underbrace{e_{A}^{1}\left(p_{1}, p_{2}\right)+e_{B}^{1}\left(p_{1}, p_{2}\right)}_{z_{1}\left(p_{1}, p_{2}\right)}]+p_{2}[\underbrace{e_{A}\left(p_{1}, p_{2}\right)+e_{B}^{2}\left(p_{1}, p_{2}\right)}_{z_{2}\left(p_{1}, p_{2}\right)}]=0
\end{aligned}
$$

- Any prices $\left(p_{1}^{*}, p_{2}^{*}\right)$ that make the demand and supply equal in one market, is guaranteed to do the same in the other market
- Implication: Need to find the prices $\left(p_{1}^{*}, p_{2}^{*}\right)$ that clear one market only, say market 1 ,

$$
z_{1}\left(p_{1}^{*}, p_{2}^{*}\right)=0
$$

- In general, if there are markets for n goods, then we only need to find a set of prices that clear $n-1$ markets.

