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Ch. 4. Utility

I. Utility function: An assignment of real number u(x) ∈ R to each bundlex

A. We say that u represents � if the following holds:

x � y if and only if u(x) > u(y)

– An indifference curve is the set of bundles that give the same level of utility:
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B. Ordinal utility
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III. Application: labor supply

–



C : Consumption good

p : Price of consumption good

` : Leisure time; L : endowment of time

w : Wage = price of leisure

M : Non-labor income

C ≡M/P : Consumption available when being idle

– U(C, `): Utility function, increasing in both C and `

– L = L− `, labor supply

A. Budget constraint and optimal labor supply

pC = M +wL⇔M = pC−wL = pC−w(L− `)⇔ pC+wl = M +wL = pC + wL︸ ︷︷ ︸
value of endowment

e.g.) Assume U(C, l) = Ca`1−a, 0 < a < 1, M = 0, and L = 16, and derive the labor
supply curve

B. Changes in wage: w < w′
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Ch. 20. Cost Minimization

I. Cost minimization: Minimize the cost of producing a given level of output y

min
x1,x2

w1x1 + w2x2 subject to (x1, x2) ∈ Q(y) (i.e. f(x1, x2) = y)

A. Tangent solution: Consider iso-cost line for each cost level C, w1x1 +w2x2 = C ; and find
the lowest iso-cost line that meets the isoquant curve

w1
w2

w1
w2

w1
w2

y = f(x1, x2)

cost
decreases

x1(w, y)

x2(w, y)

x2

x1

→ TRS = MP1

MP2
= w1

w2

→

{
x1(w, y), x2(w, y) : Conditional factor demand function

c(w, y) = w1x1(w, y) + w2x2(w, y) : Cost function

B. Examples

– Perfect complement: y = min{x1, x2}

→ x1(w, y) = x2(w, y) = y

c(w, y) = w1x1(w, y) + w2x2(w, y) = (w1 + w2)y

– Perfect substitutes: y = x1 + x2

→ x(w, y) =

{
(y, 0) if w1 < w2

(0, y) if w2 < w1

c(w, y) = min{w1, w2}y

– Cobb-Douglas: y = Axa1x
b
2 →

{
TRS = ax2

bx1
= w1

w2

y = Axa1x
b
2

→ c(w, y) = Kw
a

a+b

1 w
b

a+b

2 y
1

a+b , where K is a constant depending on a, b, and A
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→ Monopolist buys less input than competitive firm does

III. Monopsony

– Monopsonistic input market + Competitive output market

A. Input choice
max
x

pf(x)− w(x)x

F.O.C.−−−−→ pf ′(x)

= MRP

= w′(x)x+ w(x)

= MCx

= w(x)

[
1 +

x

w(x)

dw(x)

dx

]
= w(x)

[
1 +

1

η

]
,

where η ≡ w
x
dx
dw

or the supply elasticity of the factor

MCL

SL

Lm Lc

wm

wc

DL: p ·MPL

wc

w

L

Example. w(x) = a+ bx: (inverse) supply of factor x

→MCx =
d

dx
[w(x)x] =

d

dx

[
ax+ bx2

]
= a+ 2bx

B. Minimum wage under monopsony
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endowment
point

p∗1/p
∗
2

p1/p2

excess demand

A’s demand for good 1 B’s demand for good 1

A’s demand for good 1 B’s demand for good 1

E

OA

OB

– If (p∗1, p
∗
2) is equilibrium prices, then (tp∗1, tp

∗
2) for any t > 0 is equilibrium prices as well

so only the relative prices p∗1/p∗2 can be determined.

– A technical tip: Set p2 = 1 and ask what p1 must be equal to in equilibrium.

C. Walras’ Law

– The value of aggregate excess demand is identically zero, i.e.

p1z1(p1, p2) + p2z2(p1, p2) ≡ 0.

– The proof simply follows from adding up two consumers’ budget constraints

p1e
1
A(p1, p2) + p2e

2
A(p1, p2) = 0

+ p1e
1
B(p1, p2) + p2e

2
B(p1, p2) = 0

p1[e1
A(p1, p2) + e1

B(p1, p2)︸ ︷︷ ︸
z1(p1,p2)

] + p2[e2
A(p1, p2) + e2

B(p1, p2)︸ ︷︷ ︸
z2(p1,p2)

] = 0

– Any prices (p∗1, p
∗
2) that make the demand and supply equal in one market, is guaranteed

to do the same in the other market

– Implication: Need to find the prices (p∗1, p
∗
2) that clear one market only, say market 1,

z1(p∗1, p
∗
2) = 0.

– In general, if there are markets for n goods, then we only need to find a set of prices that
clear n− 1 markets.
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