Contents

1	The Market	4
2	Budget Constraint	8
3	Preferences	10
4	Utility	14
5	Choice	18
6	Demand	24
7	Revealed Preference	27
8	Slutsky Equation	30
9	Buying and Selling	33
10	Intertemporal Choice	37
12	Uncertainty	39
14	Consumer Surplus	43
15	Market Demand	46
18	Technology	48
19	Profit Maximization	52
20	Cost Minimization	54
21	Cost Curves	57
22	Firm Supply	59
23	Industry Supply	62
24	Monopoly	64

25 Monopoly Behavior	67
26 Factor Market	72
27 Oligopoly	76
28 Game Theory	80
30 Exchange	85

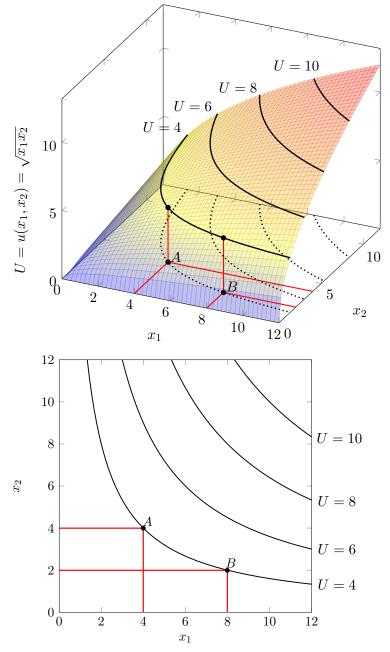
Ch. 4. Utility

I. Utility function: An assignment of real number $u(x) \in \mathbb{R}$ to each bundlex

A. We say that *u* represents \succ if the following holds:

 $x \succ y$ if and only if u(x) > u(y)

– An indifference curve is the set of bundles that give the same level of utility:



B. Ordinal utility

III. Application: labor supply

- $-\begin{cases} C: \text{ Consumption good} \\ p: \text{ Price of consumption good} \\ \ell: \text{ Leisure time; } \overline{L}: \text{ endowment of time} \\ w: \text{ Wage = price of leisure} \\ M: \text{ Non-labor income} \\ \overline{C} \equiv M/P: \text{ Consumption available when being idle} \end{cases}$
- $U(C,\ell)$: Utility function, increasing in both C and ℓ
- $-L = \overline{L} \ell$, labor supply
- A. Budget constraint and optimal labor supply

 $pC = M + wL \Leftrightarrow M = pC - wL = pC - w(\overline{L} - \ell) \Leftrightarrow pC + wl = M + w\overline{L} = \underbrace{p\overline{C} + w\overline{L}}_{\text{value of endowment}}$

e.g.) Assume $U(C, l) = C^a \ell^{1-a}$, 0 < a < 1, M = 0, and $\overline{L} = 16$, and derive the labor supply curve

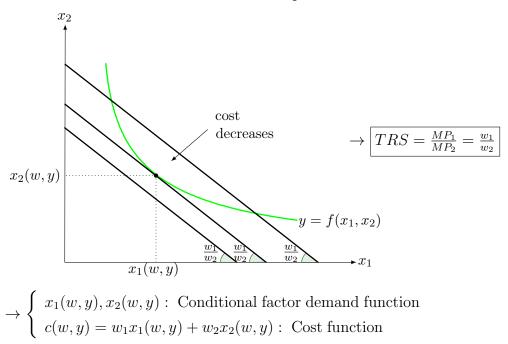
B. Changes in wage: w < w'

Ch. 20. Cost Minimization

I. Cost minimization: Minimize the cost of producing a given level of output y

 $\min_{x_1,x_2} w_1 x_1 + w_2 x_2 \text{ subject to } (x_1,x_2) \in Q(y) \text{ (i.e. } f(x_1,x_2) = y)$

A. Tangent solution: Consider *iso-cost line* for each cost level C, $w_1x_1 + w_2x_2 = C$; and find the *lowest* iso-cost line that meets the isoquant curve



B. Examples

– Perfect complement: $y = \min\{x_1, x_2\}$

$$\rightarrow x_1(w, y) = x_2(w, y) = y c(w, y) = w_1 x_1(w, y) + w_2 x_2(w, y) = (w_1 + w_2) y$$

– Perfect substitutes: $y = x_1 + x_2$

$$\rightarrow x(w, y) = \begin{cases} (y, 0) & \text{if } w_1 < w_2 \\ (0, y) & \text{if } w_2 < w_1 \\ c(w, y) = \min\{w_1, w_2\}y \end{cases}$$

- Cobb-Douglas: $y = Ax_1^a x_2^b \rightarrow \begin{cases} TRS = \frac{ax_2}{bx_1} = \frac{w_1}{w_2} \\ y = Ax_1^a x_2^b \end{cases}$

 $\rightarrow c(w,y) = Kw_1^{\frac{a}{a+b}}w_2^{\frac{b}{a+b}}y^{\frac{1}{a+b}}$, where K is a constant depending on a, b, and A

 \rightarrow Monopolist buys less input than competitive firm does

III. Monopsony

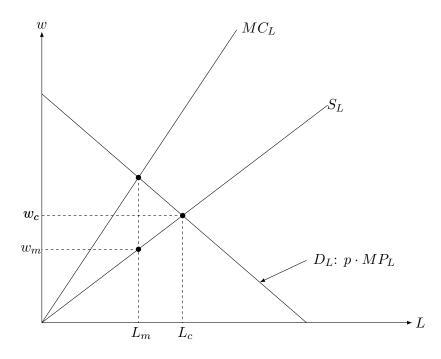
- Monopsonistic input market + Competitive output market

A. Input choice

$$\max_{x} pf(x) - w(x)x$$

$$\xrightarrow{F.O.C.} pf'(x) = w'(x)x + w(x) = w(x)\left[1 + \frac{x}{w(x)}\frac{dw(x)}{dx}\right] = w(x)\left[1 + \frac{1}{\eta}\right],$$
$$= MRP = MC_x$$

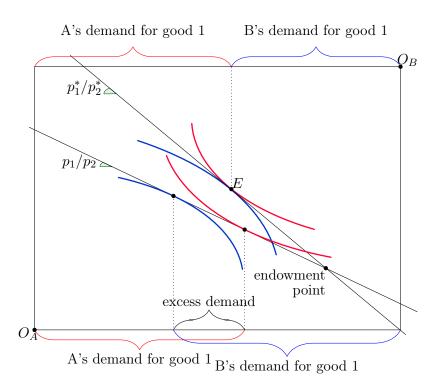
where $\eta \equiv \frac{w}{x} \frac{dx}{dw}$ or the supply elasticity of the factor



Example. w(x) = a + bx: (inverse) supply of factor x

$$\rightarrow MC_x = \frac{d}{dx} \left[w(x)x \right] = \frac{d}{dx} \left[ax + bx^2 \right] = a + 2bx$$

B. Minimum wage under monopsony



- If (p_1^*, p_2^*) is equilibrium prices, then (tp_1^*, tp_2^*) for any t > 0 is equilibrium prices as well
- so only the relative prices p_1^*/p_2^* can be determined.
- A technical tip: Set $p_2 = 1$ and ask what p_1 must be equal to in equilibrium.
- C. Walras' Law
- The value of aggregate excess demand is identically zero, i.e.

$$p_1 z_1(p_1, p_2) + p_2 z_2(p_1, p_2) \equiv 0.$$

- The proof simply follows from adding up two consumers' budget constraints

$$p_{1}e_{A}^{1}(p_{1}, p_{2}) + p_{2}e_{A}^{2}(p_{1}, p_{2}) = 0$$

+
$$\frac{p_{1}e_{B}^{1}(p_{1}, p_{2}) + p_{2}e_{B}^{2}(p_{1}, p_{2}) = 0}{p_{1}[\underbrace{e_{A}^{1}(p_{1}, p_{2}) + e_{B}^{1}(p_{1}, p_{2})}_{z_{1}(p_{1}, p_{2})}] + p_{2}[\underbrace{e_{A}^{2}(p_{1}, p_{2}) + e_{B}^{2}(p_{1}, p_{2})}_{z_{2}(p_{1}, p_{2})}] = 0$$

- Any prices (p_1^*, p_2^*) that make the demand and supply equal in one market, is guaranteed to do the same in the other market
- Implication: Need to find the prices (p_1^*, p_2^*) that clear one market only, say market 1,

$$z_1(p_1^*, p_2^*) = 0.$$

– In general, if there are markets for n goods, then we only need to find a set of prices that clear n-1 markets.