

Tuesday 06 October 2020 – Afternoon

A Level Chemistry A

H432/01 Periodic table, elements and physical chemistry

Time allowed: 2 hours 15 minutes

You must have:

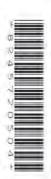
. the Data Sheet for Chemistry A

You can use:

- · a scientific or graphical calculator
- · an HB pencil

entre number	Candidate number	
Cittle Halliber	Candidate number	
and according		
irst name(s)		

INSTRUCTIONS

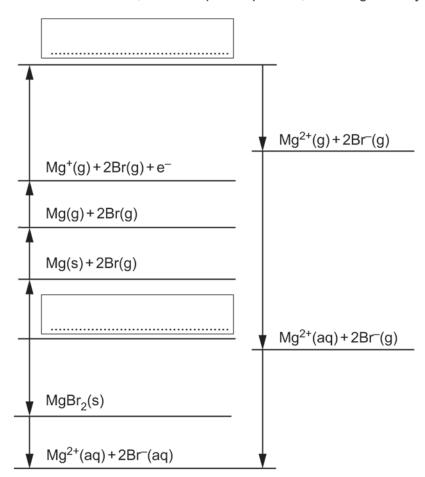

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- Answer all the guestions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION

- The total mark for this paper is 100.
- The marks for each question are shown in brackets [].
- Quality of extended response will be assessed in questions marked with an asterisk (*).
- This document has 28 pages.

ADVICE

Read each question carefully before you start your answer.


(d) The enthalpy change of hydration of bromide ions can be determined using the enthalpy changes in **Table 16.2**.

Enthalpy change	Energy/kJ mol ⁻¹
1st ionisation energy of magnesium	+736
2nd ionisation energy of magnesium	+1450
atomisation of bromine	+112
atomisation of magnesium	+148
electron affinity of bromine	-325
formation of magnesium bromide	-525
hydration of bromide ion	to be calculated
hydration of magnesium ion	-1926
solution of magnesium bromide	-186

Table 16.2

(i) An incomplete energy cycle based on Table 16.2 is shown below.

On the dotted lines, add the species present, including state symbols.

	23	
(b)	Chlorine is used in water treatment.	
	State one benefit and one risk of using chlorine in water treatment.	
	Benefit	
	Risk	
		[1]
(c)	Compound A contains bromine and fluorine only, and has a boiling point of 41 °C.	
	1.26 g of compound A is heated to 80 °C. The volume of gas produced is 0.209 dm ³ .	
	Under the conditions used, 1 mol of gas molecules has a volume of 29.0 dm ³ .	
	Determine the molecular formula of compound A .	
	molecular formula =	[3]

Turn over © OCR 2020