
Structure of eukaryotic cells

Animal cells

Animal cell lysosome ribosomes cell membrane centrosome smooth peroxisome endoplasmic reticulum nuclear pore nucleolus nucleoplasm nuclear envelope rough endoplasmic reticulum Golgi apparatus mitochondrion secretory vesicles cytoplasm © Encyclopædia Britannica, Inc.

Plant cells

- Functions of organelles (5)

- Nucleus: Stores cell's chromosomes
- Mitochondria: Provides ATP
- Golgi apparatus: Site which packages and releases proteins
- Rough ER: Synthesis and transportation of proteins
 - Ribosomes on RER synthesize proteins
 - Proteins from RER are used for the secretion
 - Golgi apparatus modifies proteins
 - Vesicles transport proteins from the Golgi apparatus to plasma membrane via exocytosis
- Smooth ER: Site of lipid synthesis
- Lysosomes: Contains digestive enzymes to break down cells
- Free ribosomes: Site of protein synthesis
- Plasma membrane: Controls entry and exit of material

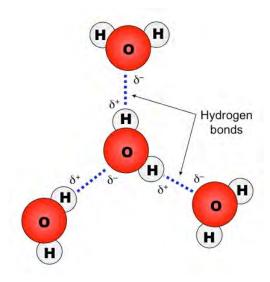
Compare prokaryotic and eukaryotic cells... (5)

Prokaryotic cells	Eukaryotic cells
no nucleus	nucleus;
naked DNA	DNA associated with
	histone/protein;
loop of DNA	strands of DNA;
no mitochondria	mitochondria;
70S/ smaller ribosomes	80S/ larger ribosomes;
no/few internal membranes / no	internal membranes/organelles/
organelles	Golgi/ER/lysosomes;
smaller in size (approx. 1-10µm)	larger in size (approx. 10-100µm);
cell wall (glycoprotein) present	sometimes present/not in animal cells;

- This debunked the **spontaneous generation theory**, stating that life spontaneously forms from non-living matter
 - Louis Pasteur and the swan neck experiment with broth
 - Broth boiled to kill existing microbes
 - Broke the neck of flask, broth became cloudy as microbes from the atmosphere entered

Unit two:

Water structure


- Two hydrogen atoms **covalently** bonded to an oxygen atom
- Polarity
 - Oxygen (-) attracts electrons more strongly, whereas hydrogen is more positive
- Polarity allows water molecules bind to each other with hydrogen bonds
 - Negative oxygen attracts positive hydrogen of other water molecules

Properties of water

- Thermal: Can absorb heat before changing state
 - Due to extensive hydrogen bonding
 - Comparison to methane (CH4): Good basis due to similarities in size, weight and valence
 - Methane is nonpolar and only can form weak bonds, thus changes shape more easily
- Cohesive/Adhesive
 - Cohesion: Ability to stick to like molecules
 - Water to water
 - Adhesion: Ability to stick to dissimilar molecules
- Solvent: Dissolves polar and ionic substances
 - Weakens intramolecular forces due to large attraction between water
 - Hydrophilic: Polar ions which readily dissolve
 - Hydrophobic: Large, non-polar molecules (Eg. Fats and oils)
- Metabolic activities of cells all take place in aqueous solutions

Importance of water to living organisms (6)

- Coolant in sweet and transpiration
- Universal solvent and dissolves many substances due to the polarity
- Has high thermal capacities: Temperature of water changes slowly
 - Oceans do not freeze, stable habitat
- Medium for transport in blood, the xylem and phloem, and metabolism
 - Cohesive properties allows for capillary action and transpiration stream
- Surface tension due to cohesion allows organisms to live on water surfaces
- Solvent makes it a medium for metabolic reactions

- Following glycolysis, pyruvate undergoes fermentation
- Produces lactate in humans and ethanol in yeast
 - Lactate: Needs to be broken down by oxygen (Oxygen debt)
 - Yeast: Addition of yeast in bread
 - Yeast respires using oxygen trapped in dough, CO2 gets stuck, and when baked, the bread rises

Cell respiration: The process in which organic substances are broken down and used to make ATP

- Oxygen + glucose > Carbon dioxide + Water + Energy
- Phosphorylation: The addition of a phosphate group to ADP, realising 30.7kJ
 - ATP > ADP + D
 - ATPase is the enzyme which controls this process
- Begins in the cytoplasm

- Glycolysis (6)

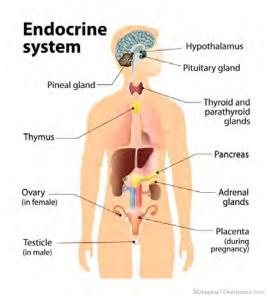
- Occurs in the cytoplasm
- Phosphorylation > Lysis > Oxidation
- Substrate is glucose
 - Phosphorylation of glucose to form glucose 6-phosphate
 - Requires ATP
- Glucose 6-phosphate is converted and **split** into **pyruvates**
- Oxidation produces x2 NADH + H+, two pyruvate and net gain of 2 ATP
- Glucose > x2 pyruvate, x2 NADH + H+, net x2 ATP
- Moves to the mitochondrion
- Link reaction
 - Pyruvate is converted to acetyl coenzyme A
 - CO2 is released via **decarboxylation** and NAD is **reduced** to NADH + H+
 - Pyruvate > x2 CO2, x2 NADH + H+ and Acetyl CoA
- Krebs cycle
 - Acetyl CoA combines with 4C oxaloacetate to make a C6 citric molecule
 - **Decarboxylation** of 6C to **4C** releases 2CO2 per molecule of pyruvate
 - Also reduces x3 NAD and x1 FAD to produce x3 NADH + H+ and x1 FADH2
 - Substrate level phosphorylation produces x1 ATP
- Electron transport chain
 - Occurs in the inner mitochondrial membrane
 - NADH + H+ and FADH2 bring electrons to the ETC by being oxidised
 - Reduced in glycolysis and the krebs cycle
 - Allows **H+** to accumulate in the **intermembrane space** to generate a **proton gradient**
 - H+ diffuse back into the matrix through proton pumps in the inner mitochondrial membrane
 - **Chemiosmosis** is facilitated by the transmembrane enzyme ATP synthase
 - H+ moves through ATP synthase in the inner mitochondrial membrane, producing ATP
 - Oxidative phosphorylation of ADP to ATP
 - O2 acts as the final electron acceptor, producing water with H+
 - Produces x34 ATP

How energy is generated by the ETC (8)

- NAD and FAD carriers are reduced by gaining hydrogen ions
 - NADH + H+ and FADH2 is produced in glycolysis and the krebs cycle

- Therapeutic cloning: Involves producing embryos from which embryonic stem cells can be harvested for medical use
- In favour...
 - Procedure which can reduce pain and suffering can be ethically justified
 - Can be used to replace organs that has been damaged
 - Pain and suffering can be reduced and improve the quality of life
 - Cells are removed at a stage where the embryo can feel no pain
 - Cells can be removed from embryos that have stopped developing and would have died
- Argument against...
 - Embryonic stem cells are no longer needed as adult stem cells can be used instead
 - Danger of embryonic cells that are not yet known
 - Human embryos can be potential humans that have the right to develop
 - More embryos may be produced that can be used
 - On purpose killing

Unit five:

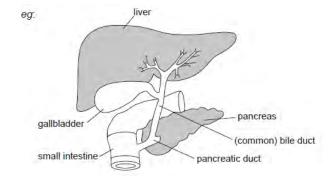

Homeostasis (4)

- Process of ensuring that the body's internal environment maintains a constant state, regardless of the changes in the external environment
- Internal environment would be kept within narrow limits
- We utilise negative feedback mechanisms involving hormones and the nervous system
 - **Negative feedback**: Reverses the change detected by using the product of a process to inhibit the process
 - Change is detected by a receptor, activating the effector to induce the opposite effect, promoting equilibrium
- Eg. Body temperature, body pH, oxygen etc.

Hormones: Chemical messengers produced by the endocrine glands carried in the blood to a target organ

Control of blood glucose concentration

- Controlled by glucagon and insulin
 - Antagonistic hormones, produced by the islets of Langerhanns in the pancreas
 - Detects low/high blood glucose levels
- Negative feedback mechanism
- Glucagon increases blood glucose levels, converting glycogen into glucose
 - Released by **a** cells
- Insulin decreases blood glucose levels, promoting glucose reuptake and glucose breakdown into fatty acids
 - Released by **b** cells
- Glucose levels would be low due to exercise and high after eating



Diabetes mellitus: Metabolic disorder resulting from a high blood glucose concentration over a prolonged period

Epithelium forms a barrier

5) Accessory organs

- Liver: Products of digestion are broken down and fats are emulsified by bile
 - Produces bile
 - Detoxifies and neutralizes
 - Products are absorbed into the submucosa wall, to the blood
- Gallbladder: Stores bile produced by the liver, which is released into the small intestine
- Pancreas: Produces a broad spectrum of enzymes, released into the small intestine

How the small intestine moves, digests and absorbs food (8)

- Contraction of muscles via **peristalsis** helps move food
 - Circular muscle contraction prevents backward movement of food, longitudinal muscle contraction moves food along the gut
- Peristalsis mix food with enzymes, which digest large insoluble molecules into smaller soluble molecules
 - Eg. Amylase digests starch into glucose, lipases digest lipids into fatty acids and glycerol etc.
- Bile is secreted into the small intestine by the to emulsify fat and create a good pH environment
- Mucosa layer of the small intestine contain villi, which are finger-like projections which increase surface area
 - Absorb products of digestion
 - Glucose and amino acids > Blood
 - Lipids > Lacteals
 - Absorption involves active transport and diffusion, where different nutrients are absorbed by different mechanisms

Digestion, absorption and assimilation of proteins (6)

- Digestion consists of the breakdown of large insoluble molecule into small soluble molecule
- In the stomach, requiring pH 2 to function
 - Pepsin > Proteins into polypeptides
- In the small intestine, requiring a basic pH
 - Trypsin > Polypeptides into amino acids
- Absorption occurs in the villus of the small intestine
 - Absorbed into capillaries
- Blood carries amino acids throughout the body
 - Diffuse into cells by active transport, where amino acids are used to build proteins
- Assimilation is the process of amino acids becoming part of a cell

Digestion of food in the human digestive system (6)

- Mechanical digestion of food beginning in the mouth by chewing
 - Increases the surface area of food
 - Starch digestion begins in the mouth by salivary amylase
- Digestion of proteins in the stomach
 - Stomach provides the optimum pH for enzymes, being very acidic
 - Stomach muscle contractions also causes mechanical digestion
- Enzymes in the small intestine complete digestion

- Endocrine system uses nerves to transmits messages to pacemaker
 - To increase/decrease the rate of the pacemaker
 - Controlled by the medulla of the brain
 - Accelatory nerve: Epinephrine to increase rate, produced by the adrenal gland
 - Vagus nerve: Acetylcholine to decrease rate

Type of pathogens

- Virus: Inert and acelular which mutates quickly
- Bacteria: Unicellular prokaryotic cells which divide by binary fission
- Fungi: Attacks the body's surface
- Protozoa: Parasite

Surface barriers: The first line defense

- **Skin**: Physical barrier which protects external structures
 - Sebaceous glands which secretes lactic acid, lowering the skin's acidity
 - Acidity prevents growth of pathogens
 - Non-pathogenic bacteria also crowds bacteria out of skin
- **Mucous**: Softer membrane which protects internal membrane
 - Traps pathogens to be removed by cilia
 - Contains lysosomes which causes cell lysis and kill bacteria

Blood clotting

- Clotting factors are proteins which initiate the clotting cascade
- Fibrin is a protein which permits the blood to clot
- Once clotting factors are activated, it triggers the conversion of prothrombin to thrombin
- Thrombin converts **fibrinogen to fibrin**
- Fibrin forms a mesh to trap platelets and prevents the entry of pathogens

Coronary thrombosis: The formation of a clot within the blood vessels that supply and sustain the heart tissue

- A blockage in the coronary artery would deprive the muscle of a supply of oxygen and nutrients
- Fibrillation: Uncoordinated and irregular contractions, resulting the shrivelling of heart muscles
- Atherosclerosis: Areas of the artery become damaged, and cholesterol builds up and forms
 plaque. The artery loses elasticity.

Antibiotics (4): Components that kill or inhibit the growth of microorganisms by targeting and blocking prokaryotic processes. Protects humans against bacteria

- Only blocks prokaryotic processes, but not in eukaryotic cells
- Blocks the metabolic pathways (DNA replication, transcription, translation etc.) in prokaryotes
- Antibiotics do not protect against viruses as they have no metabolism
- Can be used in humans as antibiotics do not affect eukaryotic cells
- Spectrum: The diversity of the bacteria
- Selective toxicity: The degree of harmfulness of the antibiotic

Types of leukocytes

- Phagocytes: Second lineLymphocytes: Third line
- Leukocytes defend the body (6)
 - Can recognize pathogens as each pathogen has specific antigens

- High blood pressure due to a larger afferent than the efferent
- Capillaries with fenestrations of the glomerulus
- Basement membrane: Molecular sieve
 - Large blood proteins do not pass
- Epithelial cells: Podocytes wrap around the glomerulus

2. Osmoregulation/Selective reabsorption

- The filtrate passes through the proximal convoluted tubule for selective reabsorption
 - Tubule cells are specialised
 - Microvilli for a large surface area
 - Mitochondria for ATP during active transport
 - Basal infoldings increase surface area
- Reuptake of glucose, amino acids, sodium, chloride and water
 - Na and Cl: Actively transported into the tubule, diffuses to the basal end, actively transported into the tissue, diffuses into the blood
 - Glucose and amino acids: Cotransported with sodium
 - Water: Follows ions via osmosis
 - Urea: 50% follows water

3. Loop of Henle

- Creates a solute gradient in the medulla
 - Descending limb is more permeable to water
 - Ascending limb is more permeable to salts
- Water is reabsorbed in the descending limb
- Sodium is actively transported out the ascending limb
- Filtrate becomes more concentrated as salt and water leaves

4. Collecting duct

- Antidiuretic hormone (ADH) increases the permeability of the duct, increasing the number of aquaporins
 - Secreted by the pituitary gland, controlled by the hypothalamus
 - Hypothalamus detects the solute concentration
 - ADH is released when the individual is dehydrated
- Water is more easily reabsorbed, urine becomes more concentrated
- Negative feedback
- 5. Substances not absorbed are eliminated as urine

Structure of the nephron in altering blood solute concentrations (9)

- The kidney carries out the osmoregulation of blood solute concentrations
- Ultrafiltration occurs in the glomerulus
 - Capillary walls with fenestrations are more permeable to smaller molecules
 - Bowman's capsule has a **basement membrane** and epithelial cells with which act as a filter
 - High blood pressure due to a larger afferent than the efferent
- Reabsorption of useful substances in the proximal convoluted tubule
 - Tubule cells are specialised
 - Microvilli provide a large surface area
- Loop of henle
 - Descending limb more permeable to water
 - Ascending limb more permeable to salts
 - Creates a solute gradient for water and sodium to be reabsorbed
 - Water by osmosis

- Auxins increase the flexibility of cell walls
 - Enables **cell elongation** on the side to cause growth towards the light
- Proton pumps are activated in the plasma membrane
- Secretion of **H+** ions into the cell wall
 - Decreases the pH
 - Breaks bonds between the cell walls using expansin enzymes that were activated
- Cellulose fibres within the cell wall loosens
 - Influx of water causes the cell to increase in size
 - Enhances ion uptake, causing increased turgor
- Auxin also causes **gene expression** to promote cell growth
 - Produces proteins, which repress or activate the expression of other genes

Role of auxin in phototropism (8)

- Auxin is a plant hormone which is produced at the shoot tip
- Auxins increase the flexibility of cell walls
 - Enables cell elongation on the side to cause growth towards the light
- Proton pumps are activated in the plasma membrane
- Secretion of H+ ions into the cell wall
 - Decreases the pH
 - Breaks bonds between the cell walls using expansin enzymes that were activated
- Cellulose fibres within the cell wall loosens
 - Influx of water causes the cell to increase in size
 - Enhances ion uptake, causing increased turgor
- Auxin also causes gene expression to promote cell growth
 - Produces proteins, which repress or activate the expression of other genes
- Phototropism is growth towards light
- Shoot tip senses the direction of light, moving to the side of the shoot with the least light
 - Causes cells on the darker side to elongate, growing towards the light

Micropropagation: Method to produce a large number of identical plants from a selected stock plant

- Used for rapid multiplication of important plants with superior genotypes
- Can reproduce asexually from meristems (Totipotent)
- Economical on time and space
- Labour intensive and expensive, no variation, requires a set environment
- The process of micropropagation
 - Selected plant tissues are cut (Explant)
 - Explants are sterilised using solutions
 - Transferred to a culture vessel to be incubated
 - New shoots that develop are removed and placed on a new culture medium

Substances transported in flowering plants

- Nutrients (CO2 and H2O) required for photosynthesis
 - Water is absorbed into the root hair cell by osmosis
- Oxygen for photosynthesis
- Food in sugar
- Plant growth substances (Eg. Auxin)
- Mineral ions (Eg. Magnesium, calcium and iron)
 - Calcium ions for cell wall, iron as a cofactor of many ions
 - Transported via mass-flow with water by diffusion

Chordata	Pinophyta
Mammalia	Phinosbida
Carnivora	Pinales
Canidae	Cupressaceae
Canis	Sequoia
Canis lupus	S. Semporrirens
Golden retriever	California redwood

Types of classification schemes

- Artificial: Arbitrarily selecting unifying characteristics first, then grouping accordingly
 - Easy to develop
 - Does not show evolutionary relationships
- Natural: Grouping organisms based on similarities, then identifying shared characteristics
 - Groups based on evolution
 - Predict characteristics shared by a species
 - Changes as new information is discovered
- Phylogenetic: Grouping based on homology in DNA and similarities in amino acid sequences

Divisions of the plant kingdom (9)

- Bryophyta
 - Non vascular
 - No leaves, roots or stems, only has rhizoids
 - Produces spores
- Filicinophyta
 - Have leaves, roots and stems
 - Pinnate leaves
 - Produces spores
- Coniferophyta
 - Needle-like and waxy leaves
 - Produce seeds in cones
- Angiospermophyta
 - Has ovules and ovaries
 - Has flowers
 - Covered seeds

Invertebrate classes

- Porifera: Eg. Sponge
- Cnidaria: Has tentacles, radicle symmetry, one opening, sac-like body, eg. Jellyfish
- Platyhelminthes: One opening to their digestive tracts
- Annelida: Has a mouth and anus, segmentation, eg. Worm
- Mollusca: Has a muscular foot, two openings, eg. Snail
- Arthropoda: Exoskeleton, jointed appendages and segmented bodies, eg. Crabs

Vertebrate classes

- Occurs in the inner mitochondrial membrane
- NADH + H+ and FADH2 bring electrons to the ETC by being oxidised
 - Reduced in glycolysis and the krebs cycle
- Allows H+ to accumulate in the intermembrane space to generate a proton gradient
- H+ diffuse back into the matrix through proton pumps in the inner mitochondrial membrane
 - **Chemiosmosis** is facilitated by the transmembrane enzyme ATP synthase
 - H+ moves through ATP synthase in the inner mitochondrial membrane, producing ATP
 - Oxidative phosphorylation of ADP to ATP
- O2 acts as the final electron acceptor, producing water with H+
- Produces x34 ATP

How energy is generated by the ETC (8)

- NAD and FAD carriers are reduced by gaining hydrogen ions
 - NADH + H+ and FADH2 is produced in glycolysis and the krebs cycle
- ETC is in the mitochondrial inner membrane
- Electrons release energy as they flow along the chain
- Proteins in the inner mitochondrial membrane act as proton pumps
 - Has ATP synthase
- As H+ accumulates in the intermembrane space, it generates a proton gradient
- Chemiosmosis occurs as H+ ions diffuses through the proton pumps with ATP synthase
 - Oxidative phosphorylation occurs, converting ADP to ATP

Overview of photosynthesis

1. Light dependent reaction (Thylakoid membrane) (8)

- Photoactivation in Photosystem II
 - Pigments absorb light energy
 - Boosts electrons to become 'excited', increasing the energy level
 - Excited electrons accepted by a carrier protein molecule within the thylakoid membrane

- Photolysis

- Lost electrons are replaced by the splitting of water
 - Split into electrons, protons (Hydrogen ions used to reduce NADP+) and oxygen
 - Oxygen is a waste-product

Photophosphorylation

- Excited electrons are transferred to Photosystem I via ETC
- Protons (H+) are pumped into the thylakoid membrane
 - Builds the concentration gradient
- Protons flow through large channel proteins which contain ATP synthase
 - Chemiosmosis
- Results in the formation of ATP (ADP + Pi > ATP)

- Reduction of NADP+

- Absorption of light energy causes photoactivation in Photosystem I
 - Boosts more electrons to become 'excited'
 - Replaces those lost in Photosystem II
- Electrons combine with protons in the hydrogen carrier NADP+
 - Form NADPH+H+