1.1.1 Biological Molecules

Starch:

- Polymer of α glucose- held with glycosidic bonds
- Plant storage polysaccharide- ideal storage
 - Compact
 - o Insoluble- no osmotic effect
 - Glucose added/removed easily
- Amylose:
 - Linear
 - Condensation reactions between α glucose- many
 - 1-4 links
 - o Coils into helix
- Amylopectin:
 - o Condensation reactions between α glucose
 - 1-4 links
 - o 1-6 links also exist
 - o Can fit inside the amylose

Glycogen:

- Storage polysaccharide in animals
- 1-4 and 1-6 links
- Storage:
 - Compact
 - o Insoluble- no osmotic effect
 - Glucose added/removed easily

Cellulose:

- Plant cell walls
- Long, parallel chains of β glucose- H bonds
- Adjacent glucose mols rotated 180°- allow H bond between OH groups
- Microfibrils- lots of these make fibres

Chitin:

- Exoskeleton of insects
- Strong, waterproof, lightweight
- Alternating isomers

Lipids:

- Function= energy stores in animals and plants
- Contain elements CHO
- Triglycerides= fatty acids and glycerol- by condensation reactions- between carboxyl group (COOH) of fatty acid and hydroxyl group (OH) of glycerol- ester bond
- Fatty acid= R.COOH
- Saturated= double C-C heart disease
- Unsaturated= single C=C lower mp, not as compact

Proteins:

- Functions= haemoglobin, antibodies, enzymes
- Primary:
 - o Polypeptide chain
 - o Bonds:
 - » Peptide bonds
- Secondary:
 - Polypeptides twist or coil
 - α helix or β pleated sheet
 - Bonds:
 - → H bonds
- <u>Tertiary:</u>
 - Folding of α helix
 - Polypeptide folded into precise, compact structure
 - Bonds:
 - Disulphide bridges
 - → H bonds
 - Jonic bonds
 - * Hydrophobic interactions
- Quaternary:
 - Combo of 2+ polypeptide chains in tertiary structure
 - O Bonds:
 - » Ionic bonds
 - Disulphide bridges
 - H bonds
- Fibrous:
 - Polypeptide chains= parallelno tertiary folding
 - o Insoluble
 - Structural functions e.g: keratin and collagen
 - Numerous cross-linkages- form long fibres
 - o Strong, tough, stable

- Globular
 - Polypeptide chains have tertiary structure
 - o Soluble
 - Metabolic functions e.g: enzymes, antibodies, hormone
 - Haemoglobin= examplequaternary
 - Easily change chemically- not stable

Water:

- The oxygen nucleus draws -ve electrons away from the +ve hydrogen nucleus
- Has uneven distribution of charge
- Polar
- Electrostatic attraction between +ve region and -ve region mols- makes weak H bonds
- Individual bonds are weak, but there's many- stick together in strong lattice- cohesion
- Properties:
 - Universal solvent
 - » dissolves more substances than any other liquid
 - * allows chemical reactions to happen- acts as transport medium
 - o High surface tension
 - » formed by the cohesion between mols
 - used by water skaters
 - High specific heat
 - large amount of heat to raise temp
 - * stops large fluctuations in temp- aquatic habitats stable
 - High latent heat
 - large amount of heat to turn into vapour
 - important in temp control
 - Maximum density at 4°C
 - → ice is less dense than water
 - * ice on surface- insulated below- aquatic life survival
 - Transparent
 - → light can pass through
 - » photosynthesis
 - o Cohesive
 - * sentence about cohesion above
 - * tall columns of water can be drawn up into xylem vessels in tall trees
 - Polar
 - * attracts other charged particles. sentence about cohesion above
 - » allows water mols to be cohesive

Nucleus:

- Largest organelle
- 10-20µm diameter
- Chromatin= dispersed genetic material (DNA)
- Contains DNA + controls activities of cell
- Nucleolus
 - makes rRNA
 - o nucleoplasm
- Nuclear pores
 - o 100nm diameter
- Nuclear membrane
 - o double layered
 - o continuous with ER
 - o pores

Cytoplasm:

- Contents of cell- organelles
- Cytosol- without organelles

Endoplasmic Reticulum (ER):

- Network of membranes forming cisternae found throughout cytoplasm- originates from outer membrane of nucleus
- Rough
 - o ribosomes are attached
 - o made of cisternae
 - o protein synthesis occurs
- Smooth
 - o synthesise lipids and steroids

Mitochondria:

- Found in cytosol of most eukaryotic cells
- 2-5µm length
- Convert energy into ATP in aerobic respiration
- They have:
 - outer membrane (whole structure)
 - inner membrane (fluid-filled matrix)
 - o intermembrane space between membranes
 - o inner membrane folded- cristae- form matrix- inc surface area for respiration
- Muscle cells- lots of mitochondria- require lots of ATP

Ribosomes:

- Protein synthesis
- 2 parts- subunits- small and large
- Some found in cytoplasm- most found in ER
- When in ER- make proteins the cell needs

Golgi Body:

- Formed by vesicles pinched off RER
- Protein is transported in vesicles
- Responsible for modifying proteins made in ER for secretion
- Other functions:
 - o produce glycoprotein
 - o form lysosomes
 - transport and store lipids

Lysosomes:

- Small vacuoles from golgi body- contain enzymes which are isolated from rest of cell
- Use these enzymes to destroy worn out organelles and digest material taken into cell e.g. via phagocytosis
- ER and golgi make them

Centrioles:

- Only in animal cells
- Found just outside nucleus in centrosome
- 2 hollow cylinders and right angles to each other
- Used in the formation of microtubules of spindle in cell division

Vacuoles:

- Only in plant cells
- Large and permanent
- Surrounded by membrane- tonoplast
- Main function= storage
- Contain cell sap, storage site for chemicals and provide osmotic system

Chloroplast:

- Large plasmid containing chlorophyll
 - o absorb light for photosynthesis
- Double outer membrane
 - o contains stroma with ribosomes, lipid and circular DNA
- Thylakoids
 - parallel flattened sacs
 - photosynthetic pigments found here- provides large SA for trapping light energy
- Grana
 - stack of thylakoids
- Lamelle
 - between grana and thylakoids
- Self-replicating

Cell Wall & Plasmodesmata:

- Made of cellulose microfibrils in polysaccharide matrix
- Plasmodesmata