Module 1: Protein Structure and Function

1. Introduction to Proteins 1
2. Elements of Protein Struc ture \#1 3
3. Elements of Protein Structure \#2 5
4. Haemoglobin asa model protein \#1 7
5. Haemoglobin as a model Protein \#2 7
6. Variant Ha emoglobins. 9
7. Post-translational Modific ations 11
8. The Awesome power of enzymes 14
9. Biotec hnology: synthesis of pha ma ceutic al proteins 14
10. Introduction to ProteinsWednesday, July 8, 2015
Desc ribe the properties of amino acids and how they relate to protein structure and function

	Proteins are non-branching, linear polymers that form bunched up macromolecules. They are composed of a specific linearsequence of amino acids linked together by chemical bonds. The function and purpose of the protein is dependent on the order of a mino acids in the polymer chain.
Recognize whether an amino acid contains a polar, non-polar and/or ionisable side chain	
	Non-polar amino acids have a C... as their R group side chain. Uncharged Polaramino acids have a C with alcohol oramide functional group on it. Charged PolarAmino acids are the same as uncharged polaramino acidsbut the functional group on the C extension is charged.
Recognize if an amino acid contains a basic or acidic side chain	
	Charged polar amino acidscan eitherbe negatively charged and therefore acidic or positively charged and therefore basic. Negatively charged (acidic) polar amino acids have a O - and positively charged (basic) polaramino acids have a $\mathrm{NH}_{3}{ }^{+} / \mathrm{NH}_{2}+/ \mathrm{NH}^{+}$.

Draw the structure of an amino acid in different states of ionisation

An a mino acid hasan amino group, a carboxyl group and an R side chain, which differentiates between the different a mino acids. The alpha carbon to which all these attach to is therefore made into a chiral carbon and va rious a ra ngements (L/D and S/R forms) of the attached substituents can alter the amino acid's identity. The amino and carboxyl ends of proteins are usually charged but the R side chains of each a mino acid
 can also be charged at different pHs .

	A single a mino acid can also be ionized when its a mino or carboxyl groups a re charged. When both are charged, it becomesa zwitterion. The pKa value foran ionizable group on an a mino acid or protein is the pH at which the group is 50% ionized. The pl , or isoelectric point is the pH at which the net charge on an a mino acid (or protein) is zero.
Know how amino acids join to form peptides and proteins	
	Amino acids are covalently linked together by peptide bonds. A short stretch of a mino acids joined together is a peptide. (a)
Explain the importance of the peptide bond and describe its structure	
	Peptide bonds are usually trans and pla nar non-rotating. They have partial (40\%) double bond character due to electron resonance resulting in polarity and a trans planar orientation. Most peptide bondsare trans $\sim 10 \%$ that precede proline may be cis.
Explain what is meant by, and apprec iate the importance of, posttranslational modification	
	Amino acids are translated from RNA into proteins at the ribosome. Some amino acids are modified after they are added to a protein. This is called 'posttranslational modific ation.' There are several types: phosphorylation, glyc osylation, methylation, adenylation, iodination, metal binding etc.

2. Eements of Protein Structure \#1

Thursday, July 9, 2015

Define primary, secondary, tertiary and quatemary levels of protein structure

$$
\begin{aligned}
& \text { Prima ry Structure - the order in which a mino a cids a re linked via peptide bonds } \\
& \text { (this determines all higher structures that result). Peptide bonds behave like double } \\
& \text { bonds and are pla nar (also can be in } \\
& \text { trans or cis), the carbon a tom bonding is } \\
& \text { angled a lso. } \\
& \text { Secondary structure - the a ra ngement } \\
& \text { in space of the atoms in the peptide } \\
& \text { backbone. There is regular fold ing } \\
& \text { stabilized by hydrogen bonds between } \\
& \text { backbone peptide groups eg. } \alpha \text {-helix } \\
& \text { and } \beta \text {-helix. } \\
& \text { Tertiary Structure - the 3-dimensional a rangement of all the atoms in the protein. } \\
& \text { This is a secondary structure, which has bended and twisted in such a way as to } \\
& \text { achieve maximum stability or lowest energy state. This is fashioned by many } \\
& \text { stabilizing forces from bonding interactions between the side-cha in groups of the } \\
& \text { amino acids. TERTIARY STRUCTURE DOESN'THAVE HYDROGEN BO NDING BUTMIGHT } \\
& \text { INOLVE COVALENTDISULRE BRIDGES } \\
& \text { Quatemary Structure - the way in which several polypeptide cha ins associate in a } \\
& \text { multi-subunit protein. }
\end{aligned}
$$

Desc ribe properties of the α-helix and β-sheet and sketch these structures

Define and explain the importance of ϕ, ψ, χ and ω rotation angles in peptide structure	
	The different levels of protein structure are created by rotation of the a mino acid polymer ma in chain bonds and side chain bonds. There are four main angles that are rotated. These are ϕ, ψ, χ and ω. Within each amino acid are two bonds with reasonably free rotation: the alpha carbon-amino nitrogen bond and the alpha carbon-carboxyl bond. The way these are rotated is important for the 3-dimensional conformations of peptides and proteins. ϕ (phi) is the $\mathrm{C}_{\alpha}-\mathrm{N}$ bond rotation $\Psi(p s i)$ is the $\mathrm{C}_{\alpha}-\mathrm{C}$ bond rotation ω (omega) is the peptide bond (either trans/cis) χ (chi) is the side chain bond rotations (all R groups) NB: there is steric hindrance between the H on the Amide N and the carbonyl O .

Sketch and explain the concepts involved in a Ramachandran plot

Ramachandran catalogued the collisions (asmentioned above) for each amino acid and the rotations that a void steric hindrance.
He found that $\boldsymbol{\phi}$ (phi) rotation can lead to O-O collision and Ψ (psi) can lead to NHNH collision.
Ramachandran plots show the permitted angles around an alpha carbon.
The shaded regionsare permitted combinations of alphas with the darker regions being more favourable. Bond angles from MOST proteins fall within the predicted allowed regions.

Define and explain the function of tums in protein structures
Sharp, hairpin like loop that usually involves 3 or 4 a mino acids which are most commonly gly and pro as these induce natural bends. This is because the side chain of proline connects back onto the alpha amino group of the a mino acid and it introduces a natural bend in a polypeptide chain that is useful forchanging direction.

Explain how side-chains are usually orientated in proteins

Amino a cid side cha in bond rotation angles are called x and are usually staggered to avoid steric hindrance. The combination of all the Phi, Psi, Omega and chi angles for a protein leadsto a 30 structure.

Understand the concept that the ultimate function of a protein is dictated by its amino acid sequence and higher order structure

The amino acid sequence and therefore the order of the amino acids making a polypeptide chain and linked by peptide bonds is called the primary structure. This dictates the regular folding into a secondary structure, which makes alpha and beta structures, which are stabilized by hydrogen bonds.
Tertiary structure is then formed which is constra ined by phi, psi, omega and chi bond rotations so as to avoid steric hindrance. Covalent disulfide bridges are involved at this stage, as hydrogen bonding no longer exists. Quatemary structure is non-covalent interactions between two ormore folded polypeptides.

3. Eements of Protein Structure \#2

Friday, July 10, 2015

Explain what is meant by supersec ondary structure and a structural domain	
	A supersec ondary structure is a structure of many secondary structures that are connected by tumsor by regions of less ordered structure called loops or coil. So a secondary structure is the a rrangement in space of the atoms in the peptide backbone. Some parts of the peptide backbone fold independently of one a nother. These supersecondary structure elements combine to form domains - independently folded regions that often possess a specific binding function. As shown on right, this protein has 2 distinctive domains (one in red and one in green). Typic ally a protein domain hasa hydrophobic core and the hydrophilic parts of the protein are aranged on the surface in contact or near solvent. A domain is a large part of a protein that is folded up.

Describe the interactions that stabilize the tertiary structure of a protein, namely the non-covalent interactions and disulphide bonds

There are several interactionsthat stabilize the tertiary structure of a protein:

- Non-covalent interactions (more long range than hydrogen bonding) such as electrostatic attractions (+ve and -ve)
- Disulphide bonds (in the case of extracellular proteins)

${ }^{\text {sH}}$	Cysteine has a sulphide in its side chain. This is attracted to other cysteines and their sulphides bond forming disulphide bonds.
cystene	

- Metal ion Coordination
- Hydrophobic interactions (hydrophobic side chains cluster on inside of protein while polar (hydrophilic) side chains cluster on outside.
Appreciate that most proteins contain combinations of helices and sheets that form distinctive pattems

A domain is a relatively stable independently folded region within the tertiary structure of a globular protein. A protein can have several different doma ins and each of these often have a particularfunction associated with them. Proteins

