Physiology of Integrated Organ Function

Statistics ·····	2
Parametric ·····	2
Non-Parametric ·····	2
Non-Normal Data·····	
Control Systems·····	3
Types of Homeostasis Regulation ······	3
Integration – Cell-to-cell signalling·····	3
Control Circuits·····	3
Exercise Physiology ······	······ 6
Cells and Organs ·····	······ 6
The Cardiovascular System ·····	
Ventilation ·····	
Thermal Physiology ······	
Heat Balance·····	11
Fever and Acclimation	13
Thermoregulation – During Exercise ······	14
Motor Control ·····	15
Sensorimotor Integration and Balance ······	17
Nociception and Pain······	
Reproductive Endocrinology ······	21
GnRH·····	
Kisspeptin	23
Integrated Physiology ·····	25
Intestinal ·····	
Circadian Rhythms·····	26
Obesity and the Respiratory System·····	27
Ethanol ·····	20

Statistics

Parametric

- Nominal variable comes in groups like male/female, and the number of groups defines the number of levels
- **Univariant** variability in one direction i.e. only one measured variable which has random variation
 - o Single Factor ANOVA = 1 measured and 1 controlled with many levels
 - o T-test works on date with 1 measured and 1 controlled with 2 levels only
 - o Summary statistics: Mean \pm SD
 - Two-way ANOVA = used for 2 controlled and 1 measured
 - Number of controlled variables = factors
 - Repeated measures if paired data
- Main effects 2 controlled variables
- Interaction was the effect of factor 2 the same on all levels on factor 1??
 - o Are the graphs parallel?
- Bivariant variability in two directions i.e. two measured variables
 - o Uncontrolled variables
 - o Pearson correlation co-efficient (r) test for association between
 - Hypothesis testing statistic
 - o Summary statistic: line of best fit
 - Intercept and slope are the bivariant equivalent to the mean
 - Coefficient of Determination (R²) how well line fits data
- Paired t-test = highest power, assumes normal distribution and correlation
- Student's t-test = high power, assumed normal distribution and same SD
 - o F-test = tests to see if difference between SD is significant or not
- Welch's t-test = moderate power, assumes normal distribution

Non-Parametric

- DO NOT assume a normal distribution! Assumes measurements are ORDINAL
 - o Ignore how much bigger or smaller the value is, look at the rank order only
- Mann-Whitney U-test equivalent to an unpaired t-test
 - o Tells you 1 group mostly has higher ranked members
 - o If distributions are the same it tests if the medians are the same
- Wilcoxon signed-rank test (W-test) equivalent to paired t-test
 - o Repeated measures that assumes correlation

Non-Normal Data

- For normal distribution mean and median are the same
 - o if very different, data is not normal

- Easiest test for normality = plot frequency histogram
 - o Skew shows different mean and median
 - Kurtosis too flat or too pointy

Control Systems

- Homeostasis maintenance of a similar internal environment, limit change
 - E.g. MAP is not constant random fluctuations even when all systems are working normally
 - Note: removal of baroreceptors increases variability

Types of Homeostasis Regulation

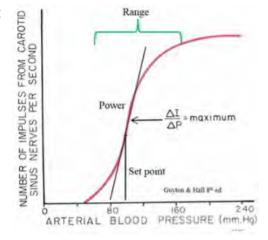
- Acceptor animals that accept and cope with external environmental change, proteins are expressed to help cope with slow change
- Avoider variable is regulated behaviourally, avoids environmental change
- **Regulator** physiological regulation
- Mammals regulate most physiologically important variables
- All animals regulate SOME variables

Integration - Cell-to-cell signalling

- Gap-junctions, local control
- Paracrine (autacoid) hormone/steroid released into ECF and received at target cell
 - o Action limited to region around releasing cell, local control
 - o E.g. Histamine released from mast cells to dilate local arterioles
- Autocrine hormone/steroid released by cell for the cell itself
 - o E.g. Smooth muscle response to stretch
- Endocrine hormone/steroid released into blood stream and then reaches target
 - o Acts on the whole body
 - o E.g. Insulin and Adr
- Neural signals transmitted as action potentials
 - o neurotransmitter released at synapse to target cell
 - o rapid communication to specific target cells
 - o acts across long distances
- Neuroendocrine hormone released from a nerve into the blood stream
 - o E.g. ADH/Vasopressin

Control Circuits

- Command circuits open loops
- Negative feedback self-limiting loops, limits change, referenced and unreferenced
 - o Unreferenced no reference point or controller
 - o Referenced output of sensor compared to a reference point


- Error signal difference between set point and measured
- Controller produces output that limits error signal
- Positive feedback amplifying loops, rare
 - o E.g. platelet activation ADP, Thromboxane A₂, Thrombin, von Willebrand
 - Damaged endothelium reveals collagen
 - Collagen binds + activates von Willebrand factor
 - Activated platelets bind and activate more platelets
 - By releasing other activators!
 - Inhibition NO, prostacyclin released from endothelial cell
- NOTE: feedforward implies anticipation, feedback CAN include anticipation
 - o Feedback has latency
- Afferent pathway Controlled variable → sensor → input to central processor → controller
- Efferent pathway controller → output to effector → effector → response
 - o E.g. Muscle Tendon Reflex
- Gain of negative feedback control = $\frac{\Delta E}{\Delta R}$ = effect/residual
 - o The amplification on the feedback system if -ve feedback, -ve gain
 - How well the feedback can counter change
 - o ΔR difference from set point after feedback
 - o ΔC difference from set point without feedback
 - o $\Delta E = \Delta R \Delta C$
- Set-point the value the control system regulates to

Simple Switching

- Simplest feedback control system on/off
- E.g. tropical fish heater if temp is below set point, heater turns on and vice versa
 - Latency is response + thermal inertia = overshoot in both directions and oscillation around set point

Input/Output Function

- Complex control not a step curve like simple switching, more sigmoidal
- Slope is power More power is less stable
- Circuit cannot cope outside of range
- Smaller error to set point = smaller change in drive and vice versa
 - Larger error signal = stronger drive to effector
- E.g. ventilatory response to CO_2 input is P_{aCO2} , output is ventilation drive, set point ~40mmHg

Gain vs Power

- Gain change stopped by/left after feedback
- Power slope of input/output function
- Related but not the same
- E.g. muscle spindle reflex opposes length change
 - o Low power produces small gain slower response, does not reach set point
 - o Higher power more gain, faster correction
 - o Too much power length overshoots, over corrects, oscillation around set point grows
- To improve stability as error signal falls, reduce power
 - o Control systems might cause overshoot below the set point

PD Control

- Uses power and derivative term derivative of error signal used to predict error
 - o Effector drive now depends on error signal and its rate of change
- Leaves an error lower gain is more stable but larger final error, add all errors on Antagonist Pairs
 - Uses a pair of muscles with opposite actions provides more range + stability
 - E.g. Posture, HR, blood glucose concentration, blood [Ca²⁺]
 - > 8 control loops for MAP regulation different gain latencies and durations
 - Desensitisation of receptor can cause feedback control system to fail over time
- o After a few days baroreceptor will change set point to current MAP Feedforward Control
 - E.g. Vestibular ocular reflex eye movement in opposite direction to head
 - Sends information to control a different variable to that which is measured
 - Note: anticipation uses delayed negative feedback and memory