NERNST POTENTIAL PRACTICAL

Membranes and	Resting Membrane Potential \rightarrow all cells have a resting membrane potential,
Membrane	which is essential to their normal function
Potentials	Ringer's solution \rightarrow contains ions essential for cell function. One litre of lactated Ringer's solution contains:
	• 130 mEq of <i>sodium</i> ion = 130 mmol/L
	 109 mEq of <i>chloride</i> ion = 109 mmol/L
	• 28 mEq of <i>lactate</i> = 28 mmol/L
	• 4 mEq of <i>potassium</i> ion = 4 mmol/L
	• 3 mEq of <i>calcium</i> ion = 1.5 mmol/L
	Ion channels \rightarrow voltage-dependent, membrane-imbedded proteins that pass a
	particular ion, usually selectively, in one direction (dependent on the electrical
	and chemical gradients) or can be activated by a ligand
	 Ca²⁺ channels (L-type and T-type)
	 K⁺ channels (at least 15 types in heart)
	 Na⁺ channels (one major type)
	Pumps → ATP-dependent and voltage-independent membrane-imbedded
	proteins responsible for the movement of ions against a chemical gradient (and
	possibly an electrical gradient)
	Exchangers \rightarrow voltage-independent & ATP-independent membrane-imbedded
	proteins that pass usually two different species of ions, uni- or bi-directionally
	(affected by chemical and electrical gradients)
Channel Activation	Na+ channel \rightarrow S4 region of the channel contains highly charged amino acids,
	and physically moves in response to voltage change (depolarisation); the voltage
Voltage-activated	change causes the amino acids to rearrange, and the channel to open.Ion channels can be in three different states (or transitions) which must occur in
Ion Channels	the order that follows:
	i) Reprimed
	ii) Activated
	iii) Inactivated: channel stops passing current, even with maintained depolarisation
	The channels movement through the phases is largely voltage-dependent, but in
	many cases is also time-dependent (when moving from activated to inactivated)
Pumps	Pumps exist to maintain required gradients; pumps work against concentration
	gradients (e.g Na+/K+ pump or Ca2+ pumps) and thus require energy, by
	splitting ATP, to move ions against it.

Exchangers	Exchangers also move ions against its gradient, but instead of using energy from
-	ATP to do this, it uses a <i>favourable gradient</i> of another ion.
Membrane and	Membrane Potential \rightarrow determined by the sum of potassium/sodium channels
Action Potentials	that are open
	Potassium Conductance \rightarrow the amount of potassium ions flowing through the
	channel; increase in potassium conductance causes drop in membrane potential,
	and maintains resting potential
	Sodium Conductance \rightarrow the amount of sodium ions flowing through the channel;
	sharp increase in sodium conductance causes a spike in membrane potential,
	known as an action potential
Nernst Potential	Nernst Potential \rightarrow the membrane potential at which there is no net (overall)
	flow of that particular ion from one side of the membrane to the other
	Nernst Potential = (RT/F) * $ln(\frac{[K+]out}{[K+]in})$
	• K ⁺ will leak out of the cell along its chemical concentration gradient
	- This results in an electrical gradient across the membrane
	 As increasing amounts of K⁺ leak out of the cell, the electrical gradient increases
	 Because opposites attract, the increasingly negative inside of the cell can exert a pull on the positively charged K⁺
	 Thus, the electric gradient grows to oppose the chemical gradient until an equilibrium is reached
	- The membrane potential at which this equilibrium is reached is the Nernst Potential
Goldman-Hodgkin- Katz Equation	Nernst Potential = (RT/F) * $ln(\frac{PNa[Na+]out+PK[K+]out+PCa[Ca2+]out}{PNa[Na+]in+PK[K+]in+PCa[Ca2+]in})$
	• The Goldman Hodgkin Katz equation is a more accurate representation of a living cell
	 It accounts for permeability (P) and contribution of all ions that can cross the membrane
	• The membrane potential is determined by the ion with the greatest permeability

ENDOCRINOLOGY

Endocrinology \rightarrow study of hormones and their actions	
Endocrine glands \rightarrow produce cell signalling molecules called hormones	
Hormones \rightarrow associate with a receptor to induce a physiological change within a target cell	
Physiological	Response to a hormone \rightarrow depends on concentration of free, biologically active
Responses to	hormone
Hormones	Concentration of the free, biologically active hormone \rightarrow depends on:
	Secretion rate from the endocrine gland
	Half-life of the hormone and how it is metabolised
	- Some hormones need metabolism to active them
	- Others are excreted by metabolism
	Whether it is bound to plasma proteins while in circulation
	- Bound hormones are not free, biologically active hormones
	The response to a hormone depends on $ ightarrow$
	Sensitivity of target cells
	Presence of receptors
	 Activation of receptors (leads to activation of second messengers)
	Intracellular signal transduction pathway (which brings about physiological
	change)
Endocrine	Too much hormone activity \rightarrow caused by hypersecretion, reduced plasma protein
Diseases	binding, reduced clearance/metabolism, excessive response at target tissue (rare)
	Too little hormone activity \rightarrow caused by hyposecretion, increased
	clearance/metabolism, tissue resistance or insensitivity (common)
The	Structure of the Hypothalamus \rightarrow located at the base of the brain; connected to the
Hypothalamus	pituitary gland by the connecting stalk
	 Made up of nuclei (concentrations of neuronal cell bodies) and nerve tracts
	(axons)
	Regulates and coordinates endocrine responses to changes in the <i>external</i>
	and internal environment
	Function of the Hypothalamus \rightarrow include:
	Regulation of behaviour
	- Reproductive, feeding, rage, fear
	Regulation of homeostasis
	 Regulation of homeostasis Body temperature, metabolism, water balance (blood volume, thirst,
	urine output), growth, stress, reproduction
	 Often regulates a combination of physiology with behaviours
	 E.g regulates water balance by promoting thirst

	Hypothalamus <i>integrates</i> stimuli from both the external and internal
	environment and produces an appropriate output
	- Receives <i>neural</i> input from other brain centres to effect endocrine
	output
	- Receives humoral (fluid-borne) input, signals (hormonal, metabolites)
	that come via the blood and cross the blood-brain barrier and are then
	present in the cerebrospinal fluid
	- Outputs can be both neural and humoral
	• Endocrine output from the hypothalamus is really about the regulation of
	the pituitary gland
	Neurohormones \rightarrow hormones synthesised within neurons
The Anterior	Cell types of the Anterior Pituitary Gland \rightarrow 5 different types that each produce
Pituitary Gland	their own hormone(s); each hormone effects their own endocrine gland or tissue:
	Somatotrophs
	- Growth Hormone
	- Liver and other tissues
	Lactotrophs
	- Prolactin
	- Breasts
	Gonadotrophs
	 "Gonadotrophins": LH (Luteinising Hormone) & FSH (Follicle
	Stimulating Hormone)
	 Gonads (ovary and testis)
	Thyrotrophs
	 TSH (Thyroid Stimulating Hormone)
	- Thyroid gland
	Corticotrophs
	 ACTH (Adrenocorticotrophic Hormone)
	- Adrenal cortex
	Capillaries of the Anterior Pituitary Gland $ ightarrow$
	Fenestrated Capillary
	- 'Fenestra' is latin for window
	- More open capillary, many gaps in the endothelial cell membrane
	 Allows for the passage of small proteins (including hormones)
	between the blood and interstitial fluid
	 Capillaries in anterior pituitary are discontinuous

Regulation of	Hormone Secretion → in response to neurohormones called "releasing
Anterior Pituitary	hormones/factors" (or "hypophysiotropic factors") from the hypothalamus
Gland	
	 Hypothalamus axons synapse at a capillary network, the median eminence Neurohormones are released into the capillary network
	 Neurohormones travel down the pituitary stalk via the hypothalamic- hypophyseal portal system
	 Neurohormones bind to receptors in the anterior pituitary, stimulating the release of hormones
	 Hormones then travel in another bloodstream to their tissues
	 Regulation of the anterior pituitary gland by the hypothalamus via circulation Releasing factors are often small peptides with a short half-life
	 Activity of each cell type is regulated independently of the others Releasing factors that control each hormone
	 Hormones can be controlled by both Releasing and Releasing Inhibiting Factors, though usually one is dominant over the other
	 In hypothalamo-pituitary disconnection, most hormone secretion
	rates go down, because Releasing Factor primarily controls their
	secretions
	 In hypothalamo-pituitary disconnection, prolactin concentrations
	actually go up, because Releasing Inhibiting Factor primarily controls the secretion of prolactin
Growth Hormone	Growth Hormone \rightarrow promotes muscle deposition and at the same time it promotes
	fat breakdown; previously called somatotrophin
	Human Growth Hormone (hGH) → 191 amino acid polypeptide, folded into a globular, anabolic protein
	Growth Hormone Concentrations in Circulation \rightarrow growth hormone is released in a pulsatile manner over a 24-hour period
	 Pulses of growth hormone released during the day Higher amplitude pulses of growth hormone released during sleep
	 In males, it is more typical to see high amplitude, infrequent pulses In females, it is more typical to see smaller amplitude, frequent pulses
	 Tissue response to growth hormone depends on pulse frequency and pulse amplitude
	 The amount of growth hormone released declines with age, as does the amplitude and frequency of pulses Peaks around puberty

ontro	ol of Growth Hormone Secretion $ ightarrow$
•	Growth Hormone Releasing Hormone
	 Neurohormone from the hypothalamus
	 Driving growth hormone secretion (and thus pulsatility)
	- 43 amino acid peptide
•	Somatostatin
	- Releasing Inhibiting Factor
	 Inhibits secretion of growth hormone (and thus inhibits pulsatility)
	- 14/28 amino acid peptides
•	Somatotroph (in anterior pituitary)
	 Has both GHRH and Somatostatin receptors
	- Both have GPCR's
	 GHRH binds and initiates the following pathway:
	 Stimulates the generation of cAMP within the somatotroph
	 This phosphorylates protein kinase A
	 This opens the voltage-gated calcium channels, resulting in calcium
	influx into the cell
	 Calcium influx causes vesicle fusion (vesicles are filled with growth
	hormone)
	\circ Growth hormone is then secreted from the somatotroph into
	peripheral circulation
	- Somatostatin, rather, inhibits cAMP, resulting in less PKA
	phosphorylation, calcium influx and hormone release
	- A convergence of signalling pathways
•	Regulation via short-loop negative feedback to the hypothalamus
	- Growth hormone exerts negative feedback on both the GHRH neuron
	and the somatostatin neurons
	- High GH levels switches GHRH off and somatostatin on
ctior	ns and Signalling of Growth Hormone $ ightarrow$
•	Major determinant of growth
	- In general, its actions are anabolic
	 Increases number and size of cells in soft tissues
	 Increases thickness and length of long bones
	- Also has some <i>metabolic actions</i> distinct from growth effects
•	Acts in most cells of the body by binding to growth hormone receptors to
	activate signal transduction pathways

	 Receptors are dimers, growth hormone locks onto both arms of the dimer to activate it and the signal transduction pathway Three major signal transduction pathways: Janus Kinase Signal Transducer and Activation of Transcription (JAK/STAT) pathway MAP Kinase (MAPK) pathway PI3 Kinase AKT (PI3/AKT) pathway In each pathway, the signalling ends up signalling through to the nucleus to regulate gene transcription Many activate changes in transcription that drive growth
Growth Hormone	Somatomedin Hypothesis → growth hormone acting via IGF-1 drives tissue growth;
and IGF-1	growth hormone causes hepatocytes to release IGF-1, which travels to target tissues
	and drives somatic growth
	 Developed in the 1950's, and still holds true Growth hormone, however, can act directly on target tissues to stimulate cell growth (doesn't have to work solely through IGF-1) Some effects of growth hormone are direct, others are indirect (IGF-1) Growth hormone can also act on <i>any cell</i> by stimulating IGF-1 production in those cells (IGF-1 then acts as a local paracrine) IGF-1 not necessarily just from the liver
	IGF-1 \rightarrow Insulin-like Growth Factor 1; they are polypeptide hormones that have
	structural regions which share homology to insulin
	 IGF-1 is the major determinant of postnatal growth
	 <i>IGF-2</i> is thought to be important for in utero growth (also structurally related to insulin and IGF-1) The receptors for both IGF-1 and IGF-2 show some structural similarities Both receptors are <i>tyrosine kinase receptors</i>, meaning they automatically phosphorylate intracellularly when the hormone binds
	 IGF-1 Signalling Pathways MAP Kinase Pathway PI3 Kinase AKT Pathway Similar pathways to growth hormone

	- Pathways signal to the nucleus, and drive cell hypertrophy, cell
	hyperplasia or proliferation, and they can increase cell survival
	 The ways by which IGF-1 drives growth
Post Natal	Post Natal Growth \rightarrow all growth after birth; cell hypertrophy (mostly) and cell
Growth	hyperplasia
	Hypertrophy \rightarrow the enlargement of an organ or tissue from the increase in size of its
	cells (increase in cell size)
	Hyperplasia \rightarrow the enlargement of an organ or tissue caused by an increase in the
	reproduction rate of its cells (increase in cell number)
	Growth Velocity \rightarrow high in the first two years of life (postnatal growth spurt) and
	around the onset of puberty (pubertal growth spurt)
	Growth rates remain reasonably high across childhood, and drops
	significantly post-puberty and ceases by the early 20s
	Growth hormone is the major hormone that drives postnatal growth
	 In childhood, there is high growth hormone pulsatility
	 Also drives pubertal growth spurt
	Plasma concentrations of IGF-1 are low in postnatal years
	 Mainly direct growth hormone during early growth
	- IGF-1 concentrations increase across childhood, and max out around
	the age of puberty
	 IGF-1 does fuel the pubertal growth spurt
	• Over a 24-hour period, IGF-1 levels are fairly stable, despite its secretion
	being stimulated by pulsatile Growth Hormone
	 Synthesis of IGF-1 takes some time following the growth hormone pulse
	- IGF Binding Proteins maintain pool of circulating IGF-1, resulting in
	slower degradation (and thus stabilising IGF-1 levels in circulation)
Actions of	Bone
Growth Hormone	 Long bone growth driven by GH and IGF-1
	 Occurs at the ends of each long bone (epiphyseal plates)
	- Constant cell division and hypertrophy lead to an increase in bone
	length
	- GH acting directly increases cell proliferation
	- IGF-1 more responsible for cell hypertrophy
	Other (metabolic) actions of growth hormone (via direct action):
	- Muscle
	 Stimulates amino acid uptake
	 Decreases glucose breakdown

	 Inhibits protein breakdown
	 Increases muscle mass by these processes
	- Adipose Tissue
	 Decreases glucose uptake
	 Increases fat breakdown (lipolysis)
	 Decreases in fat deposits by these processes
	- Liver
	 Increases protein synthesis
	 Increases gluconeogenesis (glucose output)
	 Overall increases blood glucose levels by these processes
	 Not that important usually, only in a starvation state
Growth	Short loop negative feedback \rightarrow growth hormone acts in a short loop negative
Hormone:	feedback to inhibit its releasing factor, GHRH, and promote its releasing inhibiting
Regulation &	factor, somatostatin
Integration	Long loop negative feedback \rightarrow circulating IGF-1 can work in a negative feedback
	loop to control the release of GH at both the anterior pituitary and hypothalamus
	(by virtue of GHRH and somatostatin) levels
	Hypothalamus: An Integrative Centre \rightarrow the hypothalamus controls growth (growth
	hormone pulsatility) via an integrated response to <i>hormonal, metabolic</i> and <i>neural</i>
	inputs
	Hormonal Inputs
	- Sex steroids increase GH pulsatility
	Metabolic (Humoral Inputs)
	- Metabolites such as high amino acid levels, low fatty acid levels, low
	glucose levels stimulate GHRH which stimulate GH pulsatility
	Neural Inputs
	- Stress, exercise, deep sleep, malnutrition (combination of metabolic
	and neural) increase GH pulsatility
Other Hormones	Optimal Growth \rightarrow requires normal concentrations of:
for Growth	
	Thyroid Hormones
	- T3 and T4
	- Needed at low concentrations for GH and IGF-1 to exert their normal
	growth effects
	- Permissive role in growth
	- Too much does not result in increased growth, but too little results in
	stunted growth
	Glucocorticoids
	- Stress hormones such as cortisol
	 Low levels of cortisol required for normal growth

	 Excessive glucocorticoids result in reduced growth
	Sex Steroids
	- Testosterone and estrogen
	 Act in concert with GH to stimulate growth at the tissue and
	hypothalamus levels
	• Insulin
	 Normal insulin levels required for normal growth
	 Deficiencies in insulin result in deficiencies in growth
	- Permissive role, promotes amino acid uptake into muscle (metabolic
	input for increased GH pulsatility)
Growth	Growth Hormone Deficiency \rightarrow usually related to hyposecretion of GH, results in
Abnormalities	deficient growth
	 If GH deficiency occurs in adulthood, there are no major symptoms
	• If GH deficiency occurs in childhood, it will result in a phenotype of pituitary
	dwarfism
	- Short stature
	 Normal body proportions
	- Poor muscle development
	- Excess subcutaneous fat
	- If diagnosed pre-puberty, replacement therapy with recombinant hGH
	gives near normal growth
	Growth Hormone Excess \rightarrow usually related to hypersecretion of GH from a pituitary
	tumour
	GH hypersecretion in children results in:
	- Gigantism
	 Normal body proportions, because both long bones and soft tissues
	are affected
	GH hypersecretion in adults results in acromegaly
	 Enlarged extremities: bones in hands, feet and face
	 Thickening soft tissues leads to coarse of malformed facial features
Prolactin	Prolactin \rightarrow a pituitary hormone, a 199 AA polypeptide/small protein
	Prolactin Production \rightarrow in the lactotroph cells of the anterior pituitary gland
	Prolactin Synthesis and Secretion \rightarrow is inhibited by dopamine (prolactin inhibiting
	factor); is stimulated by unknown prolactin releasing factor
	• Recall these are neurohormones which are released from the hypothalamus
	into the median eminence

l