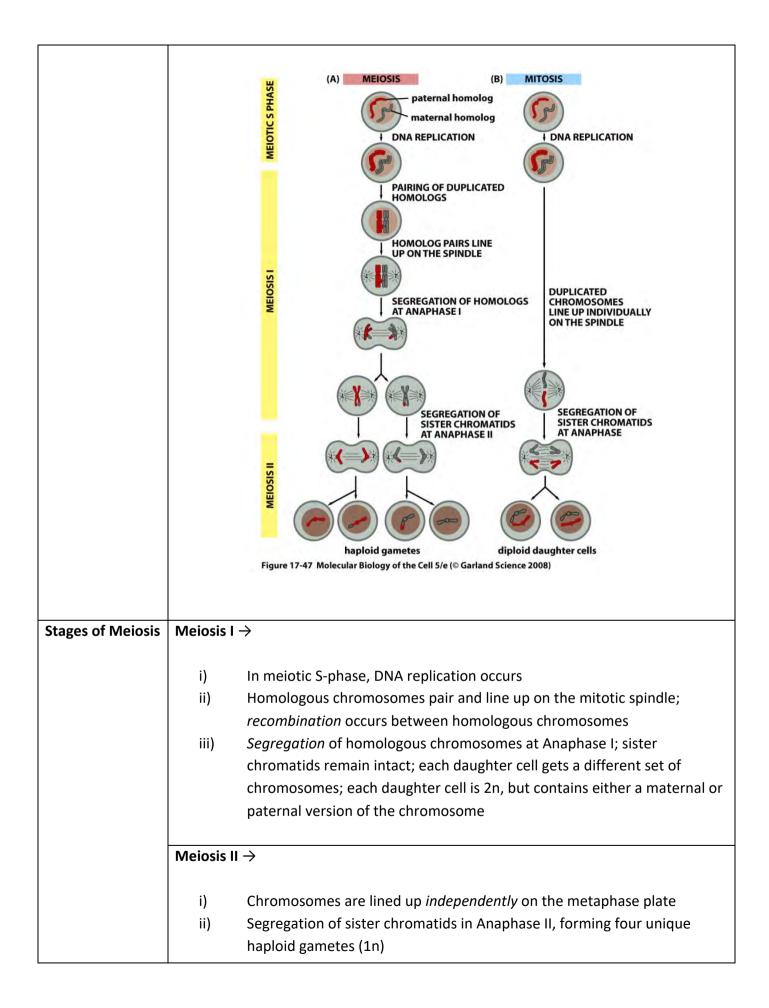
INTRODUCTION TO CELL BIOLOGY

Biomolecules	 <i>metabolites</i> (small metabolites) A key component of a where it is within the 	olecules i understar e cell	unique <i>proteins</i> and 1000's of distinct ncluding lipids) nding how a protein works is realising mes/proteins, nothing about others Cellular Component: the parts of a cell with which the protein associates Molecular Function: the elemental activities of a protein at the molecular level, such as binding or catalyst
		iii)	Biological Process: operations or sets of molecular events with a defined beginning and end, pertinent to the functioning of integrated living units (cells, tissues, organs, organisms)
	 Eukaryotic cells are divided into various morphologically and functionally distinct compartments These compartments are made up of 100's to 1000's of proteins which provide its structure and function Proteins must be targeted to the appropriate compartment to ensure proper function Knowing a proteins subcellular localisation is critical to understanding the function of individual proteins Detecting individual proteins in cells → cannot be observed with electron microscopy, so identification techniques have to be developed: Utilising the immune system 		
	 Body recognises foreign material and combats it (fight, kill, remove) Develop antigen-specific antibodies to combat foreign material By putting a human protein in another mammal, that mammal will develop antibodies specific to that protein These antibodies can then be used to identify the location of that protein within the human cell Indirect immunolabelling → the primary antibody developed in another mammal is directed against an immobilised antigen, antigen A. It binds, and then 		
	marker-coupled secondary a and mark the proteins location		directed at the non-human antibody bind, ey are easily visible)

Immunofluorescence	i)	Cultivation: culture cells (mammalian cell culture is the process of
Microscopy		growing animal cells in vitro in a flask or dish)
	ii)	Fixation: in living cells, organelles move around. Thus, to stabilise the
	-	cells internal structures, the organelles are cross-linked together,
		making them static
	iii)	Permeabilization: the lipid bilayer does not allow antibodies to pass
	,	through, and thus holes must be punched in it
	iv)	Blocking: helps get specificity
	,	
	v)	Primary antibody incubation: antigen-specific antibodies developed
	-,	from a non-human mammal enter the cell and bind to their antigen
		nom a non naman mannar enter the cen and bind to their antigen
	vi)	Secondary antibody incubation: these antibodies bind to the non-
	,	human antibody, and are marked with dyes that <i>fluoresce</i> , meaning
		they <i>absorb</i> light at one set of wavelengths and <i>emit</i> light at another
		set of wavelengths (process called <i>fluorescence</i>)
		set of wavelengths (process called fuorescence)
	vii)	Nucleus staining: by staining the nucleus and other particular regions
	•,	of the cell, a reference point is made, which can be used to identify
		fluorescent regions
	viii)	Mounting: tissue is 'mounted' onto a 12mm x 1mm coverslip
	,	
	ix)	Microscopy: tissue is observed
	Fluoresce	nce Spectra
	● Flu	uorescent dyes absorb and emit light best at certain wavelengths
	-	We can show this by plotting absorbance or emission versus
		wavelength on a graph
	-	Since the light that gets absorbed by the dye excites the dye
		molecules to a more energetic state, it is called absorption excitation
	Stoke Shif	$\mathbf{t} ightarrow$ the difference between the peak emission and peak absorption
	wavelengt	hs
	• Ту	pically, excitation (absorption) light is many times brighter than the
	en	nission light
	-	If we shone the excitation light onto the sample and looked for
		fluorescence, we might have a hard time seeing our emission
	-	This is solved by using filters that allow the excitation light to get to
		the sample, but only the emitted light gets to our eyes/camera
	1	


The Airy Disk & Resolution	 When light from the various points of a specimen passes through the objective lens and is reconstituted as an image, the various points of the specimen appear in the image as small patterns (not points) known as <i>Airy patterns</i> In Airy Disks, there is a maximum point of light intensity which is surrounded by rings of fluorescence This scattering prevents us from seeing objects close together (i.eobjects whose Airy Disks overlap)
	 Effective Resolution (d₀) → the smallest distance between two objects that still allows for them to be seen as separate entities For light microscopes, this is about 0.2µm (200nm) E.g if two objects were less than 200nm apart, we could not resolve each one
	 Super Resolution Microscopy → allows for greater resolutions because it can resolve more points of light Resolution of 10-30 nm
	 Confocal Fluorescence Microscopy → captures the light from one focal plane and removes any other sources of light Allows the visualisation of thick specimens Removes blur that conventional microscopy can't
	 Live Cell Imaging → uses naturally occurring fluorescent proteins to observe living cells Often able to be genetically coded into animals

MODULE 1- CELL CYCLE

Cell \rightarrow a membran	e-bound structure containing biomolecules that acts as the structural, functional and
biological unit of a	II organisms
Central Dogma	Gene expression dictates cell identity and function:
of Molecular	
Biology	$DNA \rightarrow RNA \rightarrow Protein$
	Organisms genome encoded in DNA, which is transcribed into RNA by RNA
	polymerase. RNA is then translated into protein, which performs a function.
Gene structure	Promotor \rightarrow transcription factors and polymerase bind here to begin transcribing
and	the gene
nomenclature	Exon \rightarrow protein coding region that is translated into mRNA
	Introns \rightarrow non-coding regions that are spliced out of mRNA (can have regulatory
	functions)
	Diploid organisms \rightarrow have two copies of every gene. If both copies are identical, the
	organism is <i>homozygous</i> at that locus.
	Alleles \rightarrow different versions of the same gene (differences in DNA sequences of the
	same gene). If the two copies of a gene are different, the organism is <i>heterozygous</i>
	at that locus.
DNA	Capping $ ightarrow$ after transcription, the primary RNA transcript is capped at the 5' end
Transcription	with a special nucleotide; important for stability and translation
into mRNA	Cleavage \rightarrow primary RNA transcript is cleaved at the 3' end
	Polyadenylation \rightarrow 3' end is polyadenylated by an enzyme called a polyadenylase;
	mRNA will have long tails of 'A's', important for stability and translation (binding site
	for proteins)
	RNA splicing \rightarrow introns are removed by splicing factors that bind to acceptor and
	donor sites within introns. Results in mature mRNA
mRNA	Single-stranded mRNA is translated into a protein within the ribosomes (after exiting
Translation into	the nucleus and travelling through the cytoplasm)
Protein	Codons \rightarrow exist within mRNA as nucleotide triplets; they specify what amino acid
	goes at their point in the sequence
	$tRNA \rightarrow$ have anticodons and amino acids attached; the anticodon is matched
	appropriately to the codon, such that the correct amino acid is retrieved
Proteins	Proteins \rightarrow the workhorse of the cell:
	Structural
	Sensors
	Transporters
	Enzymes
	Transcription Factors
	Cellular Communication
	Signal Transduction

	Amino Acids \rightarrow amino acid sequences make up proteins, though there are only 20 amino acids		
	Protein (amino acid) sequences \rightarrow determine protein structure		
	Protein structure \rightarrow determines protein <i>function</i>		
	Prion \rightarrow infectious protein with <i>normal</i> DNA sequence; infectious nature allows it to convert normal proteins into prion form		
	Goes against Central Dogma because while the prion is a mutated protein, its DNA is normal (i.e protein structure/function is not determined by DNA sequence, but by something else)		
Approaches for Studying Cells	Cell Biology \rightarrow through direct observation (microscopy); labelling cell structures of interest and observing them		
	Biochemistry \rightarrow isolating and describing proteins		
	Genetics \rightarrow looking at mutant genes, their mutant proteins, and the effects on the cell or animal		
	Genomics and Proteomics \rightarrow looking at all genes (or proteins) at the same time		
	Developmental Biology \rightarrow studying differential gene expression and the signals that		
	lead to the mature organism		
The Cell Cycle	Interphase → everything except Mitosis		
	G1 Phase (Gap 1) \rightarrow recovery from mitosis, growth		
	S Phase (Synthesis) \rightarrow DNA is duplicated		
	G2 Phase (Gap 2) \rightarrow pre-mitosis checkpoints		
	M Phase (Mitosis) \rightarrow chromosome segregation and cell division		
	G0 Phase (Gap 0) \rightarrow temporary or permanent exit from the cell cycle		
Chromosome	Chromosome \rightarrow the structural unit of genetic material consisting of genetic material		
Structure and	consisting of double stranded DNA and proteins		
Movements	Chromatid \rightarrow one copy of a duplicated chromosome (still a chromosome)		
	Sister Chromatids \rightarrow identical copies of a chromosome joined by a centromere		
	Homologous Chromosomes \rightarrow chromosome pair that includes one from each parent		
	(maternal and paternal). Different alleles.		
	Cohesins \rightarrow proteins that hold the sister chromatids together		
	Centromere \rightarrow repetitive DNA sequence that serves as a landing pad for mitotic		
	machinery		
	Kinetochore \rightarrow protein complex that binds to the centromere, linking the		
	centromere to microtubules		
	Chromosome Segregation in Mitosis $ ightarrow$		
	Duplicated chromosomes line up independently of one another		
	Each pair of sister chromatids (identical) separate		
	• Each daughter cell gets <i>all</i> of the genetic information		

Stages of Mitosis	Interphase \rightarrow chromosome duplication and cohesion; centrosome duplication, one			
	for each daughter cell (both occur in S Phase)			
	Prophase \rightarrow breakdown of interphase microtubule and its replacement by two			
	mitotic asters (centrosome + emerging microtubules); mitotic aster separation;			
	chromosome condensation for movement			
	Bromotonhaco > pueloar opuelono			
	Prometaphase → nuclear envelope breakdown; condensed chromosomes captured, bi-oriented and brought to spindle equator by microtubules			
	Metaphase \rightarrow chromosomes aligned <i>independently</i> at the metaphase plate			
	Anaphase \rightarrow Anaphase Promoting Anaphase $\mathbf{A} \rightarrow$ chromosome movement to			
	Complex (APC/C) activated, and	poles		
	cohesins degraded	-	hase $B \rightarrow$ spindle pole separation	
	Telophase → nuclear envelope reas			
		ohase r	nicrotubule array; contractile ring forms	
	cleavage furrow			
Mitotic	Centrosomes (Spindle Poles) $ ightarrow$		Centrioles \rightarrow contained within the	
Machinery	microtubule organising centres		centrosomes and are composed of	
			bundles of microtubules (source of	
			microtubules)	
	Microtubules \rightarrow capture and move	chrom	osomes; anchor to the plasma membrane	
	Molecular Motors \rightarrow drive chromos	some n	novement	
Mitosis vs	Meiosis \rightarrow cell division that only oc	curs in	the germline cells; the goal of meiosis is to	
Meiosis		are app	ropriate for sexual reproduction (i.e	
	shuffle alleles and reduce to 1n)			
	Mitosis \rightarrow cell division that occurs i	n the s	omatic cells; the goal of mitosis is to	
	produce two identical daughter cell	s (i.e	keep all alleles the same)	
	$\mathbf{n} \rightarrow$ number of chromosomes of ea	ch type	2	
	Differences Between Mitosis and N	/leiosis	\rightarrow	
	Mitosis			
	- In a mitotic cell, t	he nun	nber of chromosomes goes from 2n to 4n	
	after S-phase			
	- Most cells are somatic, and have either 2n or 4n			
	Meiosis			
	- A reductive proce	ess that	produces gametes viable for sexual	
	reproduction			
	- Reduces the num	ber of	chromosomes down to 1n	
	- In sexual reprodu	iction,	new combinations of existing alleles	
	create new phen	otypes	(this drives evolution)	

The Cell Cycles	Phoenhanulation A the entrymatic process of adding phoenhate groups to target
The Cell Cycle: Mechanisms of	Phosphorylation \rightarrow the enzymatic process of adding phosphate groups to target
Regulation	substrates to activate or inactivate them; temporary and reversible
Regulation	
	Kinase
	 An enzyme which adds phosphate groups to their targets
	 Phosphate group taken from ATP (making it ADP)
	Phosphatase
	 An enzyme that removes a phosphate from its target
	 Requires a water molecule to remove phosphate group
	Requires a water molecule to remove phosphate group
	Dheanhata around an attached to the side chains of an acific ansing acide
	 Phosphate groups are attached to the side chains of specific amino acids
	 Only Ser, Thr, and Tyr can be phosphorylated, because they have
	hydroxyl as their side chain
	 Specific kinases phosphorylate specific residues on specific
	proteins
	Phosphorylation: Kinases \rightarrow heterodimeric protein kinases drive the cell cycle
	 Cyclin dependent kinases (CDKs) are a catalytic subunit present
	throughout the cell
	 The cyclin-regulatory subunit is cyclical, and expressed at specific
	cell cycle stages
	 Cyclin recognises the substrate and determines the CDK's
	specificity
	 CDK cannot exert kinase activity without being bound to cyclin
	 Distinct CDK's regulate different cell cycle transitions
	- G0: CDK's are inactive
	 CDK's are essential for progressing through the cell cycle
	• A kinaso assay can be used to test the activity of a CDV
	 A kinase assay can be used to test the activity of a CDK Bull down evelin (CDK complex using antibadies
	 Pull down cyclin/CDK complex using antibodies Add substrate (bistors = 111, protein) and redirective ATD
	- Add substrate (histone, H1, protein) and radioactive ATP
	 Quantify the amount of labelled phosphate transferred to
	substrate on an SDS PAGE gel
	Ubiquitination $ ightarrow$ a mechanism which degrades a protein; permanent and
	irreversible
	 Ubiquitin-protein ligases attach ubiquitin to a target protein
	- Repeats multiple times, resulting in polyubiquitination
	 Proteasome recognises <i>polyubiquitination</i>, and destroys the
	protein

	Ubiquitin-Protein Ligases \rightarrow
The G1/S Phase Transition	 Ubiquitin-Protein Ligases → SCF Complex Involved in the G1-S phase transition Anaphase Promoting Complex or Cyclosome (APC/C) Involved in metaphase-anaphase and anaphase-telophase transitions G1 Cyclin/CDK Complexes → promote S-phase entry:
	 G1 Cyclin-CDKs Phosphorylate transcription factors Transcription factors drive the expression of genes that code for tools of DNA replication Transcribed genes include enzymes to make deoxynucleotides, DNA polymerases, replication proteins and S-phase cyclins
	 SCF Ubiquitin-Protein Ligases The boundary between G1 and S phase is defined by an inhibitor of S-phase cyclin/CDKs (Sic1) During G1, S-phase cyclins are created and bind to their CDK's, but the complexes action is prevented by these inhibitors However, the inhibitor serves as a substrate for the binding of G1/S cyclin-CDK's, which phosphorylates the inhibitor, making it a substrate for the ubiquitinating SCF Ubiquitin-Protein Ligase Once the inhibitor has been ubiquitinated, the S-phase cyclin-CDK's become active The cell is then abruptly pushed into S-phase
	 S-phase cyclin-CDKs promote DNA replication Phosphorylates and activates numerous proteins that go onto replicate the DNA The onset of DNA replication means that S-phase has begun S-phase cyclin/CDKs also prepare the cell for mitosis in a similar way that G1/S CDKs play in G1
	 The G1/S transition is abrupt because the S-phase cyclin-CDK inhibitor is a poor substrate Therefore, requires high levels of G1/S kinase to become phosphorylated (G1/S kinase peaks mid G1 phase) Needs to be phosphorylated on multiple sites Makes it one of the last substrates to get phosphorylated in G1

Identifying Cell	Experimental Process \rightarrow		
Cycle Genes			
	• Yeast mutants identified crucial players in the G2/M transition, including		
	activators and inhibitors of the mitotic cyclin/CDK		
	Screen for temperature-sensitive mutants		
	- Mutagenize, and grow up cells at permissive temperature		
	- Then shift them to restrictive temperature		
	 Characterise lines that fail to grow after the temperature shift 		
	Cell growth and cell division are uncoupled in S. Pombe		
	 Mitosis-defective mutants thus form long rod-shaped cells 		
	 Mutants that enter mitosis prematurely show a phenotype of 		
	very small cells		
	Identified Genes \rightarrow		
	Cdc2 is a cyclin dependent kinase (CDK)		
	- cdc2, when lost, gives a long phenotype		
	- cdc2, when dominant, gives a small phenotype		
	Cdc13 is ac cyclin that forms heterodimers with cdc2		
	- Cdc13 mutants also give a long phenotype		
	- Cdc13 = mitotic cyclin		
	 Cdc25 drives mitosis (is a phosphatase) 		
	- Deficit of Cdc25 results in a long cell phenotype (increased G2)		
	- Excess of Cdc25 results in a small cells phenotype (decreased G2)		
	Wee1 inhibits mitosis (is a kinase)		
	- Deficit of Wee1 results in a small cell phenotype (decreased G2)		
	 Excess of Wee1 results in a long cell phenotype (increased G2) 		
Entry into Mitosis	Entry into Mitosis \rightarrow controlled by a cascade of kinase and phosphatase activity		
	Mitotic cyclin and CDK subunits are assembled		
	- Wee1 phosphorylates Tyrosine Y15 of the CDK subunit,		
	inactivating it		
	- CAK phosphorylates Thymine T161, activating it (however, the		
	inhibition of Y15 means the CDK remains inactive overall)		
	- Cdc25, a phosphatase, reverses the phosphorylation of Y15,		
	creating an active mitotic kinase and allowing mitosis to begin		
	• If Wee1 is lost, there is less regulation, and the cell will enter mitosis		
	early, making it shorter		
	- If Cdc25 is lost, the cell can never enter mitosis, making it long		