# **CIV ENG Y1 FLUID MECH SUMMARY**

## 1 FUNDAMENTALS

#### **Definitions**

Fluid: A substance that deforms continuously under an applied shear stress.

Density,  $\rho$ : The mass m per unit volume V of substance, where  $\rho = \frac{m}{V}$ .

Specific weight,  $\gamma$ : The weight per unit volume of substance, where  $\gamma = \rho g$ .

Specific gravity, S: The ratio of a substance's density  $\rho$  to the density of water  $\rho_{\text{water}}$ , where  $S=\frac{\rho}{\rho_{\text{water}}}$ .

Compressibility: The ease of changing a fluid's density.

# **Continuum hypothesis**

- Only the collective reaction of all molecules in a given volume to applied forces are considered.
- Assumptions:
  - o A large number of molecules in a given volume.
  - o The physical scale of the object of interest in the fluid is large enough.

#### Stresses in fluids

- Stresses can be normal or tangential to the surface of a fluid.
  - o Normal stresses create forces that compress/expand fluid elements without altering shape.
  - Shear stresses create forces that deform their shape without altering volume.
- Fluid motion can cause stresses in the fluid, vice versa.
  - o Stationary fluids only experience normal pressure stresses.
  - o Moving fluids experience both normal and shear stresses.

## 2 FLUID STATICS

### **Definitions**

Absolute pressure: The pressure with respect to a vacuum, where  $p_{\text{vacuum}} = 0$ .

Gauge pressure: The pressure with respect to local atmospheric pressure, where  $p_{\text{atm}} = 0$ .

Manometer: Usually a liquid-filled U-tube that measures pressure differences between 2 locations.

Centre of pressure: The point where the overall pressure force can be taken to act from.

## **Pressure**

- Pressure p acts normally to any surface in contact with the fluid, where  $p = \frac{F}{A}$ .
- The speed of pressure transmission through a fluid depends on the speed of sound in the fluid and the shape of the vessel.

# Hydrostatic pressure

- In a static fluid,  $\sum F_x = \sum F_y = \sum F_z = 0$  for any fluid element. Thus:
  - Pressure is constant in the horizontal x-y planes.
  - $\circ$  In the  $z^*$ -axis, pressure p changes according to the hydrostatic equation:

$$\frac{dp}{dz^*} = \rho g \Leftrightarrow p = \int \rho g \ dz^*$$

• The general approach to solving hydrostatic pressure questions is to equate the pressures of two points at the same depth and manipulate accordingly.

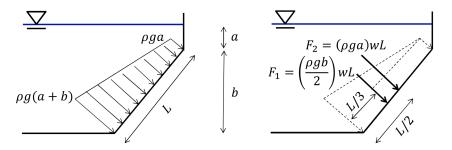
#### Forces on containers

#### Flat bottoms

For a container of base area A, the force  $F_{\mathsf{bottom}}$  exerted by a fluid filled to height h on its bottom:

$$F_{\rm bottom} = pA = \rho gV = W_{\rm fluid}, \ {\rm where} \ V = Ah$$
 is the volume of fluid.

#### **Vertical sidewalls**


For a container of width b, the force  $F_{\mathsf{side}}$  exerted by a fluid on its sidewall when filled to height h is:

$$F_{\rm side} = \int_0^h p \; dA = \rho g b \int_0^h z^* \; dz^* = \frac{1}{2} \rho g b h^2 = \left(\rho g \frac{h}{2}\right) b h$$

- $F_{\text{side}}$  can also be interpreted as the pressure at half-depth  $\frac{h}{2}$  times the surface area of the sidewall.
- The centre of pressure is  $\frac{h}{3}$  units from the base of the triangle.

### Straight surfaces at an angle

For a plate of length L and width w, the overall pressure force can be split into 2 forces, due to a constant load  $F_2$  and a linearly-distributed load  $F_1$ :



## **Complex geometries**

- Split the overall pressure force into its vertical and horizontal components:
  - $\circ$  The vertical component  $F_v$  is the total weight of the fluid above <u>up to the free surface</u> (even if there is a partially submerged structure above).
  - $\circ$  The horizontal component  $F_h$  is the pressure force on a vertical wall of the same height.
- This method of projection does not tell you where the centre of pressure is.

# Partially submerged structures

ullet For an object in a fluid, the buoyant force  $F_b$  is equal to the weight of the fluid displaced:

$$F_b = \rho g V_{\text{object}}$$

• Structures jutting below the fluid experience an upward force equal to the weight of fluid displaced by that segment up to where the free surface should be.

# **3 TURBULENCE**

## **Definitions**

Ideal fluid: A fluid that only experiences normal stresses (and thus, zero viscosity).

No-slip condition: The velocities of the fluid and a solid surface are identical at the interface.

Boundary layer: A region where flow velocity changes greatly.

Dynamic viscosity,  $\mu$ : A fluid's resistance to losing momentum to shear forces.

Kinematic viscosity,  $\nu$ : Like dynamic viscosity, but when density variations are negligible, where  $\nu=\frac{\mu}{\rho}$ .

Laminar: A flow that is organised and layered with minimal friction.

Turbulent: A flow that is disorganised and random with significant friction.