
- To build a software model, you need to work out what connects aspects of the real life problem, and make
assumptions and simplification

- The model needs to be accurate enough to produce realistic results, but not so detailed that it takes too long to
run.

- Creating software model saves tie and money - tests can be repeatedly run, and factors like safety are not
issues (such as simulating wars and nuclear reactors)

Machine, assembly & High-level programming languages

Low level
- Machine code has the least abstraction; processors execute it directly
- Assemble and high-level code must be translated to machine code
- Machine code is specific to a processor/family of processors (not portable) and corresponds to its instruction

set

- Assembly languages are also low level, but more abstracted
- They use simple mnemonics
- They are also specific to hardware and have a *mostly* one to one relationship with machine code

*as always hex can be used to shorten binary

High-level languages
- Most like ordinary languages, so are far easier to use (still strict syntax)
- They are portable, meaning they can be executed on many computers i.e you don't need to write hardware

specific code, like low level
- However some high-level languages are more abstract than others
- Less abstract: pointers, strong types, enums, stacks, templates etc

- More abstract languages leave more work to be done at runtime, so are much slower to execute. With less
abstract, you can optimise more

Translators (Assembler, compiler & Interpreter)
… a translator is a program that converts code from one language into equivalent code written in another

- All code needs to be translated to machine code

Assembler
Assembly -> Machine

- Uses the processors instruction set to convert the instructions to the machine code equivalent (produces an
object file)

- Optimisation will occur, eg subroutine subprogram calls as if they were inline, calculating values of constants
etc

Compiler
High level -> Machine

- A compiler scene through the whole code, and translates it all into machine code
- A compiled program can be directly execute (a binary file is produced)
- After translation, the compiler & source code are no longer needed

- You can distribute your program without the source code
- Error messages are only shown after scanning the whole code

- Can be awkward and time consuming for debugging

Interpreter
High level -> Machine

- Works line by line -> translates a line, then immediately executes it
- Every time you want to execute code, it must be translate again
- Stops as soon as it reaches an error
- Both the interpreter and the source code are needed at all times
- Slower than a compiler

Some languages are either, but most (modern) languages use both and may only translate part of the way (eg to
bytecode or object code)

Networks
- Are connection between nodes (devices) to share resources
- A personal area network (PAN) is within the range of an individual person eg Bluetooth connection which have

a range of around 10 m
- A local area network (LAN) is a network that connects devices close to each other eg same house or school
- A wide area network (WAN) is a network over a broader geographic area (possibly in several locations), eg the

internet. In a WAN, some infrastructure is owned by someone else (eg an ISP)
- The internet is a wan made up of many individual LANs.

Client server network
- Every device either a client or server
- A client establishes a connection with the server over the network
- Servers can backup and store data centrally, though they can be expensive and difficult to run

Peer to peer network
- This network configuration has no central server
- Each computer is equal in responsibility and each has the ability to work as both a client and a

server.

Factors affecting performance
- Latency - the delay (how fast signals travel)
- Bandwidth - max rate of data transfer (bps)
- Error rate - rate of corruption

- Wired connection are generally faster than wireless
- Bandwidth vary eg Ethernet = 10 Mbps, Wireless = 11 Mbps to 1.3 Gbps
- BUT bandwidth is shared across the network - can become congested
- Wireless range - signal degrades quickly, and signals may be blocked
- Signals at same frequency interfere (leading to data collisions)
- Bus topology = higher error rate

Network protocols and the 4 layer Model

Protocols
= sets of rules for communication

- There need to be accepted rules so devices can be compatible and reliably communicate - these are what
protocols are.

- Protocols are usually developed in layers, with each being responsible for a different part of the communication
process. TCP/IP has 4:

- Application layer: HTTP/S, FTP, SMTP, IMAP & POP, DNS
- Transport Layer: TCP, UDP
- Network payer: IP =All internet Protocol Suite (TCP/IP) protocols
- Link layer: Ethernet, Wifi

Layers

