ECMT2150 FINAL EXAM NOTES

e Same pointin time

e Random sampling (independent
observations)

e Order doesn’t matter

e Collected observations over time
e Chronological ordering important
e Observation frequency important
e Seasonality needs to be accounted for

Zero Conditional Mean (ZCM) assumption

e 2 or more sets of cross sectional data at

diff points in time
e Same variables but diff units
o Useful to look at relationships before

and after introduction of something (e.g.

govt policy)

e Time series for each cross sectional
variable
e Same units over time

« Difficult/expensive to obtain than

pooled cross section

E(u|x1, o) xk) =0

For the multiple regression model

e It requires the average of u to be the same for any given values of x's
e Itimplies that the factors in u are uncorrelated with all x's
e Itis a key condition for the estimators to be unbiased and consistent

e It defines the pop regression function

o EWlxy, ., X)) = Bo + Brxy + -+ Brxy

U is estimated to equal zero

E(u) = 0 normalises the effect of the unobserved factors on the dependent variable

e The sum of residuals is zero
e Sample covar(u,x)=0

e The mean point (, ¥) is always on the SRF (or OLS regression line)

PRF vs SRF
SRF = PRF (population regression function)
"on average" or "whenn — oo"

Sums of squares

Each y; may be decomposed into y; = y; +
i

Measuring variations from y

» Total sum of squares (to;tal variation in y;):

SST=3" (v,-7%

» Explained sum of squares (variation in )7,):

SSE=Y" (- V).

+ sum of squared Residuals (variation inJ, ):

SSR=Y" i,

=1 "1

» It can be shown that SST = SSE + SSR.



Coefficient of determination/R-squared

R? — SSE _I_SSR
857 || 55T
» larger R?, better fit;
«0=sR?2=1.

Can only be negative if the model doesn’t contain an intercept.

e Itis not advisable to put too much weight on this measure when comparing models
e If R-squared = 0.165 then 16.5% of y ix explained by x

Nonlinear relationships
e The parameters need to be linear for OLS
e Betais then interpreted differently
» Linear: y = b; + byox, where b, is the partial effect %{. If x goes up
by 1 unit, y goes up by b, units

» Linear-log: y = b; + b, Inx, where b, ~ A—f%, and the partial
effect is by /x. If x goes up by 1%, ¥ goes up by b,/100 units

» Log-linear: l;; = by + box, where b, ~ Al’;ﬁ?, and the partial effect
is by - . If x goes up by 1 unit, § goes up by b, - 100%

» Log-log: lﬁ; = by + by Inx, where b, ~ 2{% and the partial

effect is by - §/x. If x goes up by 1%, y goes up by b,%

Model Dependent var Independent var Interpretation of 8
Linear-linear Y X When Ax =1, Ay=f3,
Linear-log Y Log(x) when Ax = 1%,
B1 )
Ay = |—=
Y (100
Log-linear Log(y) X when Ax = 1, Ay
= (10031)%
Log-log Log(y) Log(x) when Ax = 1%, Ay
=B1%




Underlying assumptions of simple regression model
1. (linear in parameters) In the population model, y
is related to x by y = 8o+ B1x + u, where (8o, 81) are
population parameters and v is disturbance.

2. (random sampling) {(xi, y9), i = 1,2,...,.n} is a
random sample drawn from the population model.

3. (sample variation in the explanatory variable) The
sample outcomes on x are not of the same value.

4. (zero conditional mean) The disturbance u
satisfies E(u | x) = 0 for any given value of x. For the
random sample, E(ui | xi) =0 fori=1,2,...,n.

5. (Homoscedasticity) Var(ui | x) = o’ i= 1,2,...,n.

Under 1-4, the estimators are unbiased
unbiased: E(f)=p, E(f,)=p,.
Under 5,
The estimators are homoscedastic, and the variances are constant

— the larger is 02, the greater are the variances.
— the larger the variation in x, the smaller the variances.

— As the residual approximates u, the estimator of o2 is

52 _SSR_2.0
n-2 n-2-

“2" is the number of
estimated coefficients

— 6 =4/6?* is known as the standard error of the
regression, useful in forming the standard errors of

(B ).

Theorem 2.3 (unbiased estimator of 02)
Under SLR1 to SLR5, E(6%)=c".

week 3

In general, regression models with multiple x's :
e Allow us to explicitly control for (hold fixed) many factors that affect the dependent variable
in order to draw ceteris paribus conclusions
e Provide better explanation of the dependent variable by accommodating flexible functional

forms

— The OLS regression line or SRF can be written in the
form of changes, holding u fixed:

AV = BAX, +--+ B AX,.

e The coefficient on x; is the partial effect x; ony, holding u and the rest of x's fixed
Ay = B1Ax,

» We are able to control (hold fixed) x variables when considering effect of x,on y

» B, hasa ceteris paribus interpretation when ZCM holds for u



) Use educ, exper, tenure (years with
current employer) to explain hourly wage:

log(wage) = .284 + .092 educ + .004 exper + .022 tenure

« the coefficient on educ : holding exper and tenure fixed,
an extra year of education is predicted to increase
log(wage) by 0.092 (or 9.2% increase in wage), which
is the ceteris paribus effect under ZCM.

« holding educ fixed, the effect of an individual staying at
the same firm for an extra year on log(wage) :

Alog(wage) = .004 + .022 = .026

Predicted value and residual

— The fitted value
}71 = [y + BiXiy +- -+ P X
Is also known as predicted value.

— The residual 4, =y, -y, can be regarded as
prediction error.

assumptions of Multiple Regression Model
1. Linear in parameters
In the pop model, yis related to x'sby y = By + B1x1 + =+ Brxp +u
2. Random sample
With n > k+1
3. No perfect collinearity
None of the x's are constant and there is no perfect linear relationship among x's
4. ZCM

The disturbance (u) satisfies E (u|x4, ..., x;) for any x

Unbiasedness of OLS estimators
Under assumptions 1-4, estimators are unbiased.
e These are centred around the parameters
e Correctly estimate the parameters, on average
e Will be near the population parameters for a typical sample
Irrelevant explanatory variables
If an irrelevant x is included:
e Means the pop coefficient of that variable is 0
e The OLS estimators are unbiased, so the estimate of that coefficient will typically be near 0
e The inclusion of irrelevant variables has undesirable effects on the variances of OLS
estimators

Explanatory variables
If a relevant x is omitted:
e The OLS estimators will be biased
e The direction and size of bias depend on how the omitted is related to the included



The estimated model is j = 3, + fx,.

It can be shown that OLS is biased: E(El) =B, + ,8:5,
where 4,5 is known as omitted variable bias and 5
is the coefficient of regressing x, on xj.

Omitted variable bias is zero when:
* B, =0 (irrelevant variable)
« 5§ =0 (uncorrelated x variables)

cov(x,, x,) >0 cov(xy, x;) <0

- ve bias

- ve bias + ve bias

Variance of OLS estimators
5. Homoskedasticity
Var(u;|x;q, .., Xix) = 02 fori=1.2,..,n
Implies Var(u;) = o?
Requires that the conditional variance of u be unrelated to x's

Gauss-Markov theorem
Assumptions 1-5 are collectively known as Gauss-Markov assumptions
5. Is needed to derive a 'simple’ formula for the variances of the OLS estimators

Strictly, Theorem 3.2 is about the variances of
Theorem 3.2 OLS estimators, conditional on given x.

Under MLR1 to MLRS5, the variances of the OLS

estimators are given by:
Var(ﬁj )=

0_2

aOT 7 ™2y ? j:l)---vk’
SST/(I-R%)

where SST,=)" (x,-X,)’, X,=n"> X,
and R; is the R-squared from regressing x; on all
other independent variables.

— the larger is 02, the greater is Var([ij).

— the larger is Rj the greater is Var(/?l.).

— the larger the variation in x;, the smaller Var([i}.).

Multicollinearity
e The largeris R?, the greater is Var(p;)
- R]-2 is the R-squared from regressing x; on all other x's
e Thelarger R?, the strong x; is associated with other x's, the less informative X;
. Rjz, = 1 (ruled out by assumption 3) implies there is a perfect linear relationship between x;
and other x's (so X; is redundant)
e High but not perfect correlation between 2 or more independent variables is known as
multicollinearity which does not violate ass 3



