1.1 Introduction to biological molecules

Covalent bonding	Atoms share a pair of electrons in the outer shell, full atoms become stable	
Ionic bonding	Electrostatic attraction (atoms of opposite charges attract); weaker than covalent bonds	
Hydrogen bonding	Weak on its own and strong collectively	

Monomer	A single carbon-based unit of a polymer	
Polymer	Many monomers linked together by	
	polymerisation	

Polar molecule: electrons that aren't evenly distributed within a molecule ex. water

1 mol = 6.022 x 10²³ – Avogadro's number A molar solution has 1 mol of solute in each 1L of solution

Condensation	When 2 molecules join to form a larger molecules by removal of water	
Hydrolysis	Splitting of a large molecule into a smaller one by addition of water	

1.2 Carbohydrates: monosaccharides

Monosaccharides: monomer

- Disaccharides: a pair of monosaccharides

- Polysaccharide: a chain of monosaccharides

Monosaccharides

- Sweet-tasting
- (CH2O)n
- Ex. glucose, galactose, fructose

Glucose has 2 isomers:

Test for reducing sugars: (Benedict's)

- All monosaccharides and some disaccharides are reducing sugars
- A reducing sugar is a sugar that can donate electrons
 - 1. Add 2cm^3 of food sample in liquid form
 - 2. Add an equal volume of Benedict's solution
 - 3. Heat the mixture in a water bath

Positive result: brown/orange Negative result: no colour change

1.3 Carbohydrates: disaccharides and polysaccharides

- Joined by a glycosidic bond through a condensation reaction

Glucose + glucose = maltose Glucose + fructose = sucrose Glucose + galactose = lactose

Polysaccharides:

- Insoluble: suitable for storage
- Some provide support in structures ex. cellulose and starch

Test for non-reducing sugars (disaccharides and polysaccharides): (Benedict's)

- 1. Add 2cm^3 of food sample in liquid form
- 2. Add an equal volume of Benedict's solution
- 3. Heat the mixture in a water bath
- 4. No colour change
- 5. Add another 2cm³ of food and 2cm³ of dilute HCl (hydrochloric acid)
- 6. Place it into a water bath for 5 minutes. HCl will hydrolyse any disaccharides present into monosaccharides
- 7. Slowly add hydrogen-carbonate solution to neutralise HCl. Test with pH paper to check that the solution is alkaline

Positive result: brown/orange Negative result: no colour change

1.4 Starch, glycogen ad cellulose

Starch

- Polysaccharides
- a-glucose
- never found in animal cells

Test for starch:

- 1. Add 2cm^3 of sample to a tile
- 2. Add 2 drops of iodine solution

Positive result: blue/black

Negative result: no colour change

Structure of starch:

- Insoluble: doesn't affect water potential (can't diffuse out of cells)
- Good storage
- Compact
- When a-glucose is hydrolysed, it's easily transported and used for respiration
- Branched many enzymes can act simultaneously hence glucose monomers are released guicker

Glycogen

- Found in animal and bacteria cells, never in plant cells
- a-glucose
- stored in muscles and liver
- Structure of glycogen:
- insoluble
- compact
- more branched than starch (important for animals as they are very active and have a high metabolic rate)
- shorter chains than starch
- mass of storage is small as fat is the main storage

Chapter 1: Biological molecules Chapter 1: Biological molecules Chapter 1: Biological molecules

- b-glucose
- unbranched chains parallel to one another allowing hydrogen bonds to form cross-linkages between the chains
- collectively cellulose forms microfibrils from fibers
- provides rigidity in plant cell walls and prevents cells from bursting by exerting an inward pressure that stops further influx of water

1.5 Lipids

- Made up of carbon, hydrogen and oxygen
- Insoluble in water
- Soluble in organic substances ex. alcohol and acetone

Role of lipids:

- Cell membranes
- Phospholipids (flexibility of the membrane)
- Waterproofing
- Insulation
- Source of energy (when lipids get oxidised)
- Protection of organs

Saturated	No carbon double bonds
Monounsaturated	Only 1 carbon double bond
Polyunsaturated More than 1 carbon double bonds	

Triglycerides:

- 3 fatty acids and 1 glycerol
- Ester bond between fatty acid and glycerol

Structure of triglycerides:

- High ratio of energy storing carbon (H+ bonds of carbon atoms)
- Low mass to energy ratio good storage
- Non-polar
- Insoluble in water
- High ratio of hydrogen to oxygen atoms source of water

Phospholipids

- 2 fatty acids + 1 phosphate
- Fatty acids (tail) are hydrophobic repel water
- Phosphates (heads) are hydrophilic attracts water
- A polar molecule as 2 poles have different charges

Structure of phospholipids:

- Phospholipids form a lipid bilayer within a cellsurface membrane, forming a barrier.
 - This allows the formation of glycolipids (carbohydrate + lipid)

Test for lipids: (Emulsion)

- Add 2cm³ of sample and 5cm³ of ethanol sample
- 2. Shake gently
- 3. Add 5cm^3 of water and shake

Positive result: a cloudy-white colour (due to lipids being finely dispersed in the water - emulsion) Negative result: solution remains clear

1.6 Proteins

glycine

Structure of an amino acid

- Amino acid: monomer
- Polypeptide: polymer
- Proteins: polypeptides

Variable Group

- 2 amino acids
- Condensation reaction
- Peptide bond
- Dipeptide

Structure of proteins:

- > Primary structure: DNA determines the sequence of amino acids, which specifies shape and function of protein
- > Secondary structure: forms weak hydrogen bonds and the chain twists into an a-helix shape
- ➤ Tertiary structure: the chain folds into a 3D shape and is maintained by the following bonds: disulphide bridges ionic and hydrogen
- ➤ Quaternary structure: a combination of 2 or more peptide chains to form a polypeptide chain

Test for proteins: (Biuret)

- 1. Add an equal volume of NaOH to the sample
- Add a few drops of dilute copper (II) sulfate and mix Positive result: purple colour change Negative result: no colour change

peptide bond DIPEPTIDE

1.7 Enzyme action

Enzymes: globular proteins that act as catalysts which speed up the chemical reaction without being used up (reusable). It's effective in small amounts.

glycine

H₂O

Any reaction (sucrose + water → glucose + fructose) needs to meet the following conditions to take place:

- 1. Substrate molecules must have a high collision rate
- 2. Free energy of products must be less of substrates
- 3. To initialise the reaction, a minimum amount of activation energy is needed
- Enzymes lower the activation energy, which allows reactions to happen in lower temperatures and result in faster metabolic rates

Without the activation energy the enzymes would work too slowly

➤ Enzymes act on substrates when they come together they form an enzyme-substrate complex ➤ As substrates change the shape of the enzyme slightly, it puts a strain on the substrate, which breaks the hydrogen bonds. The activation energy lowers the strain that is put onto these bonds.

1.8 Factors affecting enzyme action

- Measure the time course to measure the progress of an enzyme-catalysed reaction. Measure:
 - o Formation of products
 - Disappearance of substrate
- Measuring the rate of reaction from a graph (gradient):
 - Draw a tangent to the curve
 - o Rise/run

Effect of temperature on enzymes:

- > Temperature rises
- > KE increases
- > Rate of successful collisions increases
- More enzyme-substrate complexes are formed
- Rate of reaction increases
- Temperature can't go above a certain point as it will break the hydrogen bonds and reshape the enzyme which will lead to denaturation.

Effect of pH on enzymes:

- Change in pH alters charges on amino acids that make up the active sites
- ➤ This alters shape/bonds of active sites so substrates can't bind to the active sites anymore
- Reaction stops

Effect of enzyme concentration on the rate of reaction:

- 1. Low enzyme concentration:
 - Substrates have to wait
 - Reaction is ½ of its fullest
- 2. Intermediate enzyme concentration:
 - Number of enzymes and substrates is equal
 - o Reaction is at its fullest
- 3. High enzyme concentration
 - No increase in rate of reaction due to all the substrates being accommodated

1.9 Enzyme inhibition

Competitive inhibitors (competes for the active site):

- Binds to active site
- Prevents substrate from binding to the active site

Non-competitive inhibitors:

- Attach themselves to the enzyme at a binding site (anywhere except for the active site)
- > Enzyme changes shape

RNA

Ribonucleic acid

Ribose pentose sugar

Single strand

Short

2.1 Structure of RNA and DNA

Nucleotides are joined together by a **phosphodiester bond** in a condensation reaction.

- Mononucleotide
- Dinucleotide

DNA

Deoxyribonucleic acid

Deoxyribose pentose sugar

Double strand

Long

Polynucleotide

143	

Cytosine pairs with Guanine

	(3 nyarogen	bonas)		
H₃C	0	H-N		, n
н-(/	N-H	N	N	
H-N	10	н′	N	

Thymine / Uracil pairs with Adenine

(2 hydrogen bonds)

Phosphodiester bonds

act as a backbone to protect the more reactive bases. Hydrogen bonds between bases make DNA more stable.

Function of DNA:

- Holds and passes genetic material from cell to cell
- Large variety of base combinations provides genetic diversity
- Rarely mutates when passed on to offspring
- DNA replication

2.2 DNA replication

Cell division:

- 1. Nuclear division: where the nucleus splits (mitosis and meiosis)
- 2. Cytokinesis: where the whole cell divides

The **semi-conservative replication** has 4 conditions:

- 1. All 4 bases must be present
- 2. Both strands of DNA act as a template
- 3. DNA polymerase enzyme must be resent
- 4. A source of chemical energy

DNA replication:

- DNA unwinds
- DNA helicase enzyme splits base pairs by breaking the hydrogen bonds
- Free nucleotides in the pool bind specifically to their complementary bases
- Bases are joined together by DNA polymerase which forms phosphodiester bonds (the backbone) to make a complete polynucleotide chains of 2 identical strands of DNA

2.3 Energy and ATP

ATP - adenosine triphosphate

$ATP + H_2\theta \longrightarrow ADP + P_i + Energy$

- Bonds between phosphates are unstable
- Lowering the activation energy
- Easily broken by hydrolysis
- Reactions is catalysed by ATPase
- Release energy

Synthesis of ATP:

- Reversible reaction
- Synthesis of ATP from ADP occurs in 3 ways:
 - 1. Chlorophyll-containing plants during photosynthesis
 - 2. Plants and animal cells during respiration
 - 3. Plant and animal cells when pH groups are transferred from donor to ADP.

Roles of ATP:

- Immediate energy source
- Metabolic processes
- Movement
- Active transport
- Secretion (forms lysosomes)
- Activation of molecules (phosphate can be used to lower activation energy and enzyme catalysed reactions)
- Better than glucose because:
 - 1. It requires less energy to release ATP molecules
 - 2. ATP is released in small quantities and is therefore manageable
 - 3. Hydrolysis of ATP is a single, one-step reaction
- ATP can't be stored; it's continuously produced in the mitochondria
- ATP is mostly present in the small intestine and muscle fibers.

2.4 Water and its functions

Properties:

- Polar molecule
- Hydrogen bonds between water molecules
- Acts as a buffer against sudden temperature fluctuations
- High latent heat of vaporisation (how much energy it takes to evaporate 1 g of water)
- Cohesive (tendency for water molecules to stick together which allows water to be pulled up a tube)
- Surface tension (when water molecules meet air they tend to pull back into the body of water than escape it)

General uses:

- Mammals are around 65% water
- Hydrolysis and condensation reactions
- Chemical reactions
- Photosynthesis
- Water as a solvent for enzymes
- Evaporates leaving organisms cool

Inorganic uses:

- Iron ions haemoglobin
- Phosphate ions structural role in DNA and storing energy by ATP
- Hydrogen ions determine pH and function of enzymes
- Sodium ions transportation of glucose and amino acids across cell membranes

3.1 Methods of studying cells

Microscopy:

- Produces a magnified image
- Convex glass lens
- Light microscopes can only distinguish between objects which are 0.2um apart
- Electron microscopes can distinguish objects that are 0.1um apart.

$magnification = \frac{\text{size of image}}{\text{actual size of object}}$

Magnification	The size of the image is compared to real life
Resolution The smallest distance where 2 discrete objects will be seen as separate	

Cell fractionation	Process where cells are broken up and the cells are separated	
	Conditions necessary:	
	1. Cold – to reduce enzyme activity	
	2. Equal water potential as tissue – to prevent organelles from bursting and shrinking	
	3. Buffered – so pH doesn't fluctuate	
Stage 1:	Cell are broken up by a homogeniser	
Homogenation	This releases organelles from the cell = homogenate	
	The homogenate is filtered	
Stage 2:	A process where the homogenate is separated in a centrifuge.	
Ultracentrifuge	Tube of filtrate is placed in centrifuge and spun at low speed	
	Heaviest organelle (nuclei) is forced to the bottom which forms a sediment/pellet	
	The supernatant (fluid on top) is removed, leaving the sediment	
	> The centrifuge is spun at a faster speed to form a second sediment consisting of the next heaviest	
	organelle (mitochondria)	
	> The process continues	

3.2 The electron microscope

- Beam has a short wavelength meaning it has a high resolution power
- As electrons are negatively charged the beam can be formed by electromagnets

Transmission Electron Microscope (TEM)	Scanning Electron Microscope (SEM)	
➤ Electron gun produces beam	Electron gun produces beam	
➤ Beam focused onto specimen by a condenser electromagnet	Beam focused onto specimen by a condenser	
Beam passes through the specimen. If beam falls onto the	electromagnet	
specimen, it's absorbed and that part appear dark. If beam	Beam bounces off the surface of the specimen to	
doesn't fall onto the specimen, it appears white	produce a 3D image	
- Photomicrograph (it can be photographed)	- Photomicrograph (it can be photographed)	
Limitation:	- Specimen doesn't need to be thin	
- Must be in a vacuum, therefore no living specimen	- Lower resolution than TEM	
- Complex staining process therefore may contain artefacts		
- Image is in black and white and in 2D		
- Specimen must be very thin		

3.3 Measurements and calculations

You can measure cells by using an eyepiece graticule (a glass disk). Depending on the magnification it will need to be calibrated. Calibrating the microscope:

- 1. Place of stage micrometre onto the stage of the light microscope
- 2. Focus the microscope so that both the stage micrometre and eyepiece graticule are in clear view