INVESTMENT

WEEK1: Interest Rates and Bonds Valuation

Bonds	
$\left\{\begin{array}{c} \text { TreasuryBonds(CommonwealthGovernment) }\left\{\begin{array}{l} \text { Fixed Coupon } \\ \text { Face Value }=\$ 1000 \\ \text { Semiannual coupon } \end{array}\right. \\ \text { CorporateBonds }(\text { Firms })\left\{\begin{array}{l} \text { Rated by bond rating agencies } \end{array}\right. \\ \text { Callable, Convertable, Floating Rate Bonds...existed } \end{array}\right.$	
Zero Coupon Bonds	Bonds with no coupon payment. Any Bonds can be treated as a portfolio of zeros as long as the discount rate and discounting period matched.
Callable Bonds	Bonds that may be repurchased by the issuer at a specified call price during the call period. Holders of called bonds forfeit their bonds for the call price, thereby giving up the prospect of an attractive rate of interest on their original investment. To compensate investors for this risk, callable bonds are issued with higher coupons and promised yields to maturity than non-callable bonds.
Convertible Bonds	Bonds with an option allowing the bondholder to exchange the bond for a specific number of shares of common stock on the firm. Convertible bondholders benefit from price appreciation of the company's stock. This benefit comes at a price that convertible bonds often pay lower coupon rates and promised yield to maturity.
Put Bonds	Bonds that the holders may choose to either exchange for par value at some date or to extend for a given number of years. It is optimal to extend the term of the bonds when coupon rate exceeds the current market yields.
Floating Rate Bonds	Bonds with coupon rates periodically reset according to market rate. The major risk involved in floaters for issuers is that the coupon rate on floaters adjusts to changes in the general level of market interest rates but not necessarily coincide with the financial condition of the firm.
Bond pricing	$\text { Price }=\text { coupon } \times \frac{1}{r}\left[1-\frac{1}{(1+r)^{T}}\right]+\text { Par Value } \times \frac{1}{(1+r)^{T}}$
Between coupon dates	$\begin{aligned} & \text { InvoicePrice }=\text { FlatPrice }+ \text { AccruedInterest }(\text { simple interest }) \\ & \approx \text { Original price } \times(1+r)^{t}(\text { compound interest }) \\ & \text { Accrued Interest }=\frac{\text { days since last coupon payment }}{\text { days between two coupon dates }} \times \text { coupon } \end{aligned}$
	There should be some return to compensate that the bondholder has held the bond for a period and hasn't received anything. Thus, when selling a bond between two coupon dates, the sellers will receive an accrued interest on top of the flat price to compensate their time value put into the bond.
Bond pricing in EXCEL	$=$ PRICE (DATE (2019,8,1), DATE (2022,8,1), Coupon Rate, Yield To Matur Par Value, Frequency Of Coupon Payment Per Annum) *note that: If the face value is 100, the enter the price and face value as the question stated; however, if the face value is $\$ 1,000$, then enter 100 and divide the price by 10

WEEK2: Valuing Risky Bonds

Attitudes Towards Risks
Risk Averse: Conpensations are needed for them to take risks.
Risk Neutral: Aren't afraid of risks as allong as the investment is a fair bet. Risk Loving: Higher Risks higher return is better than lower risks lower return

In addition: Risk neutral investors are willing to take risk as long as it's a fair bet. However, they need a fair rate of return that is the rate of return of a risky investment should be the same as a non-risky investment after taking the risk into calculation. Otherwise, you will pick the high return non-risky investment over the risky one.

Decomposition of yield

\{ If we assume no risk: YTM = Time Premium + Risk Premium + Default Premium (If we allow risk but risk neutral: YTM = Time Premium + Risk Premium + Default Prem

Expected Cash Flow	$E\left[\widetilde{C F_{A}}\right]=\sum_{s=1}^{s} p(s) * C F_{A}(s) \quad P=\sum_{i=1}^{\infty} \frac{E\left[\widetilde{C F}_{t+i}\right]}{(1+E[r])^{\wedge} i}$
Expected Return	$E\left[\tilde{r}_{A}\right]=\sum_{s=1}^{s} p(s) * r_{A}(s)=$ Time Premium + risk Premium

- Quoted yield \neq Expected return (Expected return takes risks into account, quoted yield doesn't)
- The default premium is acquired by both risk neutral and risk adverse investors. However, risk premium is only acquired by risk averse investors to make them willing to participate.
- Recovery Rate : How much you can get back if the company defaults. There are people out there who buy the bond after its default at a discount.

	downward-sloping or inverted yield curve) reflect expectations of falling short-term rates. - Advocates of the expectations hypothesis commonly invert this analysis to infer the market's expectation of future short-term rates.
	$\left(1+y_{n}\right)^{\wedge} n=\left(1+y_{n-1}\right)^{\wedge}(n-1) \times\left(1+f_{n}\right)$
The Liquidity Preference Theory	- Investors in long-term bonds might require a risk premium to compensate them for this risk. In this case, the yield curve will be upward-sloping even in the absence of any expectations of future increases in rates. - Issuers of bonds seem to prefer to issue long-term bonds. This allows them to lock in an interest rate on their borrowing for long periods and thus they may be willing to pay higher yields on these issues.
Market Segmentation and Preferred Habitat Theory	- Different investors also have different needs for maturities and that may restrict them to invest in bonds in specific maturity segments maturities. Yields in each maturity segment would be governed by demand and supply of securities within that segment, which in turn would affect the shape of the yield curve.

WEEK3: Bond Portfolio Management

Interest Rate Risk	- Change in the credit quality of the issuer - Risk \downarrow Price \uparrow YTM (promised) \downarrow - Change in the yield on comparable bonds - otherwise there would be arbitrage.		
Interest Rate Sensitivity/ Duration	- Duration is positively related to maturity - Duration is negatively related to coupon rate - Duration is negatively related yield to maturity		
Convexity	The sensitivity of bond prices to changes in yields increases at a decreasing rate as maturity increases. In other words, interest rate risk is less than proportional to bond maturity (Investors like convexity because more convex bonds. Increase in price more when yields drop than they decrease in price when yields rise.)		
	Formula	$\text { convexity }=\frac{1}{P \times(1+y)^{\wedge} 2} \sum_{t=1}^{n}\left[\frac{C F_{t}}{(1+y)^{t}}\left(t^{2}+t\right)\right]$	
Duration	- Macaiday's duration equals the weighted average of the times to each coupon or principal payment made by the bond. It captures both cash flow and maturity. - Duration allows us to quantify sensitivity which greatly enhances our ability to formulate investment strategies. * Summary measure of length or effective maturity for a portfolio. * Measure of price sensitivity for changes in the interest rate. * Immunization of interest rate risk.		
	Weight of each CF		ond price
	Internal Duration	$D=\sum_{t=1}^{T} t \times w_{t}$	$\frac{\Delta P}{P}=-D \times\left[\frac{\Delta(1+y)}{1+y}\right]$
	Modified Duration (dollar duration)	$D *=\frac{D}{(1+y)}$	$\frac{\Delta P}{P}=-D * \times \Delta y$
	Duration of perpetuity		$\frac{1+y}{y}$
	Duration Cheat	$D=\frac{1+y}{y}$	$\frac{1+y+T(c-y)}{\left[(1+y)^{T}-1\right]+y}$
	Sensitivity and convexity	$\frac{\Delta P}{P}=-D^{*} \Delta y+$	\times convexity $\times(\Delta y)^{2}$
	- The duration of zero-coupon bond equals to its time to maturity. - The duration of a floating rate bond is zero. (IN REALITY: the actual duration of floating bond is the next payment date as the coupon rate wouldn't be up to date until the next payment date. Because the coupon rate is fixed for a quarter or half year or at most a year, not instantaneous).		
Immunization	- Why we need to immunize? * Funds should match the interest rate exposure of assets and liabilities so that the value of assets will track the value of liabilities whether rates rise or fall.		

