INVESTMENT

WEEK1: Interest Rates and Bonds Valuation

Bonds			
	SuryBonds(CommonwealthGovernment) SuryBonds(CommonwealthGovernment) Semiannual coupon Rated by bond rating agencies Callable,Convertable,Floating Rate Bondsexisted		
Zero Coupon	Bonds with no coupon payment. Any Bonds can be treated as a portfolio of		
Bonds Callable Bonds	 zeros as long as the discount rate and discounting period matched. Bonds that may be repurchased by the issuer at a specified call price during the call period. Holders of called bonds forfeit their bonds for the call price, thereby giving up the prospect of an attractive rate of interest on their original investment. To compensate investors for this risk, callable bonds are issued with higher coupons and promised yields to maturity than non-callable bonds. 		
Convertible Bonds	Bonds with an option allowing the bondholder to exchange the bond for a specific number of shares of common stock on the firm. Convertible bondholders benefit from price appreciation of the company's stock. This benefit comes at a price that convertible bonds often pay lower coupon rates and promised yield to maturity.		
Put Bonds	Bonds that the holders may choose to either exchange for par value at some date or to extend for a given number of years. It is optimal to extend the term of the bonds when coupon rate exceeds the current market yields.		
Floating Rate Bonds	Bonds with <u>coupon rates</u> periodically reset according to market rate. The major risk involved in floaters for issuers is that the coupon rate on floaters adjusts to changes in the general level of market interest rates but not necessarily coincide with the financial condition of the firm.		
Bond pricing	$Price = coupon \times \frac{1}{r} \left[1 - \frac{1}{(1+r)^{T}} \right] + Par Value \times \frac{1}{(1+r)^{T}}$		
Between coupon dates	$invoicePrice = FlatPrice + AccruedInterest (simple interest) \approx Original price \times (1 + r)^t (compound interest) Accrued Interest = \frac{days \ since \ last \ coupon \ payment}{days \ between \ two \ coupon \ dates} \times coupon$		
Bond pricing in	There should be some return to compensate that the bondholder has held the bond for a period and hasn't received anything. Thus, when selling a bond between two coupon dates, the sellers will receive an accrued interest on top of the flat price to compensate their time value put into the bond. = PRICE(DATE(2019,8,1), DATE(2022,8,1), Coupon Rate, Yield To Matur		
EXCEL	Par Value, Frequency Of Coupon Payment Per Annum) *note that: If the face value is 100, the enter the price and face value as the question stated; however, if the face value is \$1,000, then enter 100 and divide the price by 10		

Interest Rates & Bo	nd Yields				
Yield To Maturity $P_t = \sum_{i=1}^{T} \frac{CF_{t+i}}{(1+r_{YTM})^i} \qquad r_{YTM} = \left(\frac{CF_{t+T}}{P_t}\right)^{\frac{1}{T}} - 1$					
	The yield to maturity is defined as the discount rate that makes the present value of a bond's payments equal to its price. This rate is often viewed as a measure of the average rate of return that will be earned on a bond if it is bought now and held until maturity. YTM=HPR when 1). Held to maturity. 2) Reinvest coupons to this yield. Discount Rate \rightarrow Price \rightarrow YTM				
Bond Equivalent Yield (BEY)	$\begin{array}{l} \text{An annual discount rate (nominal rate)} \\ \text{Also called "Annual Percentage Rate"} \\ \text{(APR)} \end{array} \qquad \begin{array}{l} r_{BEY} = r_{period} \times \frac{365}{n} \text{ (Australian)} \\ r_{BEY} = r_{period} \times \frac{360}{n} \text{ (American)} \\ r_{BEY} = r_{period} \times n \text{ periods a year} \end{array}$				
Effective Annual Rate (EAR)	$\begin{array}{l} r_{BEY} = r_{period} \times n \ periods \ a \ year \\ \hline Accounts \ for \ annual \ compound \ rate \\ (real \ rate), \ also \ called \ effective \ annual \\ yield \ or \ annual \ percentage \ yield. \end{array} \qquad \begin{array}{l} r_{EAR} = \left(1 + \frac{r_{BEY}}{n}\right)^n - 1 \\ \hline \end{array}$				
Current Yield & Coupon Rate Flat term	$CY = \frac{Annual \ Coupon}{Bond \ Price} CR = \frac{Annual \ Coupon}{Par}$ when rates of return for all periods are the same (only an assumption, not				
structure YTM, CR and CY	true in reality. In reality, long term debts tend to have higher rate of return as they are riskier.				
YTM is (some sort c coupons, so bigger ${YTM < CY < CR}$	when Price > Par (YTM contains capital loss getting from price to par) YTM = CY = CR when Price = Par when Price < Par (YTM contains capital gain getting from price to par)				
Inverse Relations Price Price Sensitivity Maturi	kip \$2,000 Price (\$) \$1,800 \$1,600 \$1,600 \$1,600 \$1,600 \$1,000 \$1,000 \$1,000 \$1000 Yield \$1,000 Calable bond bond Discount bond				
Note: In bond market, we quote YTM using the BEY method that is, YTM itself is a simple interest					
period_YTM as ann period_YTM as ann To state this anothe maturity and we ca do we use the BEY I which takes the per	ield to maturity for a semi-annual coupon bond, you should treat the ual_YTM/2. If you have a quarterly coupon bond you should treat the				

WEEK2: Valuing Risky Bonds

	 downward-sloping or inverted yield curve) reflect expectations of falling short-term rates. Advocates of the expectations hypothesis commonly invert this analysis to infer the market's expectation of future short-term rates. (1 + y_n)ⁿn = (1 + y_{n-1})^(n - 1) × (1 + f_n)
The Liquidity Preference Theory	 Investors in long-term bonds might require a risk premium to compensate them for this risk. In this case, the yield curve will be upward-sloping even in the absence of any expectations of future increases in rates. Issuers of bonds seem to prefer to issue long-term bonds. This allows them to lock in an interest rate on their borrowing for long periods and thus they may be willing to pay higher yields on these issues.
Market Segmentation and Preferred Habitat Theory	 Different investors also have different needs for maturities and that may restrict them to invest in bonds in specific maturity segments maturities. Yields in each maturity segment would be governed by demand and supply of securities within that segment, which in turn would affect the shape of the yield curve.

WEEK3: Bond Portfolio Management

Interest Data	Change in th		n in Dick Duine 1			
Interest Rate	 Change in the credit quality of the issuer - Risk ↓ Price ↑ 					
Risk	$YTM (promised) \downarrow$					
	 Change in the yield on comparable bonds – otherwise there would arbitrage. 					
Interest Rate	-	 Duration is positively related to maturity 				
Sensitivity/		 Duration is positively related to maturity Duration is negatively related to coupon rate 				
Duration			-			
Convexity	Duration is negatively related yield to maturity The sensitivity of bond prices to changes in Price					
convexity	yields increases at a decreasing rate as maturity increases. In other words, interest rate risk is less than proportional to bond maturity					
	(Investors like conve	xity because more c	onvex			
	bonds. Increase in pi					
	than they decrease i					
	Formula					
		oula $convexity = \frac{1}{P \times (1+y)^2} \sum_{t=1}^{n} \left[\frac{CF_t}{(1+y)^t} (t^2 + t) \right]$				
Duration	• Macaiday's duration equals the weighted average of the times to e					
	coupon or principal payment made by the bond. It captures both c					
	flow and ma	turity.				
	 Duration allows us to quantify sensitivity which greatly enhances our ability to formulate investment strategies. Summary measure of length or effective maturity for a portfolio. 					
	Measure of price sensitivity for changes in the interest rate.					
	 Immunization of interest rate risk. 					
	Weight of each CF $w_t = \frac{CF_t/(1+y)^t}{bond \ price}$ Internal Duration $D = \sum_{t=1}^{T} t \times w_t$ $\frac{\Delta P}{P} = -D \times \left[\frac{\Delta(1+y)}{1+y}\right]$					
		Т	bond price			
	Internal Duration	D $\sum_{i=1}^{I}$ true	$\frac{\Delta P}{D} = -D \times \left \frac{\Delta(1+y)}{y} \right $			
		$D = \sum_{t=1}^{\infty} t \times w_t$	P $[1+y]$			
	Modified Duration	$D *= \frac{D}{\dots}$	ΔP = D $\pi \times A \alpha$			
	(dollar duration)	$D * = \frac{1}{(1+y)}$	$\frac{\Delta T}{P} = -D * \times \Delta y$			
	Duration of		1+y			
	perpetuity		<u>y</u>			
	Duration Cheat	$D = -\frac{1}{2}$	$\frac{y}{1+y} - \frac{1+y+T(c-y)}{1+y+T(c-y)}$			
		2	$y c[(1+y)^T - 1] + y$			
	Sensitivity and	$\frac{\Delta P}{P} = -D^* \Delta y + \frac{1}{2} \times convexity \times (\Delta y)^2$				
	convexity	$\frac{1}{P} = -D \ \Delta y + \frac{1}{2} \times convexity \times (\Delta y)$				
	• The duration of zero-coupon bond equals to its time to maturity.					
	• The duration of a floating rate bond is zero. (IN REALITY: the actual					
	duration of floating bond is the next payment date as the coupon rate					
	wouldn't be up to date until the next payment date. Because the coupon					
	rate is fixed for a quarter or half year or at most a year, not					
	instantaneous).					
Immunization	Why we need to immunize?					
	Funds should match the interest rate exposure of assets and liabilities so that the value of assets will track the value of					
	liabilities whether rates rise or fall.					